February 2008

On the Application of Automatic Differentiation to the Likelihood Function for Dynamic General Equilibrium Models

Houtan Bastani and Luca Guerrieri

Abstract:

A key application of automatic differentiation (AD) is to facilitate numerical optimization problems. Such problems are at the core of many estimation techniques, including maximum likelihood. As one of the first applications of AD in the field of economics, we used Tapenade to construct derivatives for the likelihood function of any linear or linearized general equilibrium model solved under the assumption of rational expectations. We view our main contribution as providing an important check on finite-difference (FD) numerical derivatives. We also construct Monte Carlo experiments to compare maximum-likelihood estimates obtained with and without the aid of automatic derivatives. We find that the convergence rate of our optimization algorithm can increase substantially when we use AD derivatives.

Full paper (screen reader version)

Keywords: General equilibrium models, Kalman filter, maximum likelihood

PDF: Full Paper

Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.

Back to Top
Last Update: October 19, 2020