Cash Flows and Discount Rates, Industry and Country Effects,
and Co-Movement in Stock Returns
John Ammer and Jon Wongswan *
NOTE: International Finance Discussion Papers are
preliminary materials circulated to stimulate discussion and
critical comment. References in publications to International Finance Discussion
Papers (other than an acknowledgment that the writer has had access
to unpublished material) should be cleared with the author or
authors. Recent IFDPs are available on the Web at http://www.federalreserve.gov/pubs/ifdp/.
This paper can be downloaded without charge from the Social Science
Research Network electronic library at http://www.ssrn.com/
Abstract:
This paper examines the relative importance
of global, country-specific, and industry-specific factors in both
the cash flow and discount rate components of equity returns
between 1995 and 2003. Our framework draws upon previously separate
literatures on country versus industry effects and
(forward-looking) cash flow versus discount rate components of
equity return innovations. We apply the Campbell (1991)
decomposition for industry-by-country, all-country, global
industry, and world market index returns so we can produce a richer
characterization of same-industry and same-country effects in stock
returns. Unlike previous equity return decomposition papers, we
exploit information in equity analysts' earnings forecasts when
projecting future variables from our reduced-form equation systems.
Our findings confirm previous research that finds patterns of
correlation that suggest a richer underlying structure than just a
single common global factor. Furthermore, our results suggest that
global, within-country, and same-industry effects are all important
for both of the two key components of stock returns: news about
future dividends and news about future discount rates. In
particular, within-industry covariation in news about future
discount rates appears to be just as important as within-country
covariation in news about future discount rates. We also find that
the idiosyncratic component of cash flow news is more important
than the global component, while the reverse is true for news about
future discount rates. Our results are broadly consistent with
co-movement in future discount rates arising from perceptions of
common elements of risk, rather than national market
segmentation.
Keywords:
International stock markets, Globalization.
JEL Classification: F36, G15
* Senior Economist and Economist,
respectively, in the Division of International Finance of the
Federal Reserve Board. Email addresses for the authors are [email protected] and [email protected]. We thank
Nate Clinton for research assistance and Mark Carey and Dale
Henderson for helpful comments. The views in this paper are solely
the responsibility of the authors and should not be interpreted as
reflecting the views of the Board of Governors of the Federal
Reserve System or of any other person associated with the Federal
Reserve System. Return to text
1 Introduction
Although standard theories of portfolio choice dictate that
risk-averse investors diversify their positions broadly, one
complicating factor is that asset returns tend to be significantly
correlated - a particularly well-documented stylized fact for
traded equity securities. But what are the key forces driving this
co-movement? Traditional asset pricing models, such as the CAPM and
its multi-factor variants, offer little hint, because they take the
second moments of asset returns as given, and then concern
themselves with equilibrium values for the first moments. More
recent studies have considered the possibility of co-movements
driven by the behavior of investors, who thus participate in
shaping their own investment opportunity set. For example, Kodres
and Pritsker (2002) explore the consequences for price movements of
hedging strategies undertaken by an optimizing risk-averse investor
in a stylized setting, in some cases finding positive correlation
between returns on unrelated assets. Time-varying risk premiums, as
in Ferson and Harvey (1991), offer another means by which return
covariation can arise essentially out of investors' choices.
In this general vein, Campbell (1991) uses the Campbell-Shiller
(1988) log-linearization of the dividend yield to derive a time
series framework for decomposing the variance of equity returns
into several components: innovations in expected future excess
returns (i.e., risk premiums), in future risk-free real interest
rates (the other component of forward-going discount rates), and in
future dividend cash flows. Interestingly, Campbell's derivation is
independent of investors' preferences, with the only implicit
behavioral assumption being a weak form of rational expectations.
For aggregate U.S. stock returns, Campbell finds that news about
future excess returns is the most important component. On the other
hand, Vuolteenaho (2002) undertakes a similar decomposition of
firm-level stock returns, and finds that they are driven primarily
by cash-flow news.
Campbell and Ammer (1993) and Ammer and Mei (1996) extend this
approach to multiple assets, so that the covariances between
national stock returns can be characterized in terms of elements
like time-varying discount rates and the value of future cash
flows. Campbell and Hamao (1992) argue that if asset returns in
different countries are generated by an international multivariate
linear factor model, the conditional means of these excess returns
must move in tandem, as linear combinations of some common risk
premiums. In the extreme case of a one-factor model with fixed
factor loadings (betas), any variation over time in mean returns
would have to be perfectly correlated across assets.1 Thus, if
national financial markets are highly integrated, we should find
high correlations between future expected return innovations in
different countries. As it turns out, Ammer and Mei find increased
U.S.-U.K. financial integration after fixed exchanged rates were
abandoned in the early 1970s. In this paper, the distinction
between co-movements in discount rates on the one hand, and common
movements in expected future cash flows on the other, will also be
a key feature of our empirical characterization of international
asset return covariation.
Our work is also related to another branch of the empirical
literature on covariation in stock returns. A number of previous
studies that have addressed co-movements in an international
context have been concerned with the relative importance of country
and industry effects as common factors, distinguishing between
cross-border industry correlations and within-country
inter-industry correlations. For example, Stockman (1988) examines
contemporaneous co-movements in industrial production indices.
However, because effects of a common shock may be asynchronous,
contemporary correlations may tend to understate the degree of
commonality, which complicates the exercise. As in our paper,
Heston and Rouwenhorst (1994), Griffin and Karolyi (1998), and
Brooks and Del Negro (2002) examine stock returns, which have the
advantage of tending to reflect any common shocks without any
delay. Both Heston and Rouwenhorst (1994) and Griffin and Karolyi
(1998) conclude that common national factors are a substantially
more important feature of stock returns than are common industry
effects. However, Brooks and Del Negro (2002) argue that relaxing
these earlier authors' restriction to unit factor loadings leads to
estimates of an important role for both industry and country
effects. In another recent paper, Catao and Timmerman (2003) extend
Heston and Rouwenhorst's method for decomposing returns into
country and industry effects to permit regime switching in factor
volatility. They find that both industry factors and a global
factor have increased their importance relative to country factors
since the late 1990s. Using a different methodology to decompose
volatility components, Ferreira and Gama (2004) also find evidence
that industry factors have become more important relative a global
and country factors since the late 1990s.
The patterns of correlation found in these
industry-versus-country factor frameworks can be challenging to
interpret, although some studies have linked return correlations to
proxy measures of real-side economic integration. For example,
Griffin and Karolyi (1998) argue that on average, industry effects
explain more variation in industry index returns within the more
tradable sectors of the economy. Brooks and Del Negro (2003) use
firm-level data and find a positive association between a firm's
global market factor exposure and the ratio of the firm's foreign
sales to total sales. Similarly, Forbes and Chinn (2003) find that
bilateral co-movements in national stock and bond returns between
the world's five largest economies and other markets are positively
associated with the corresponding direct trade flows. In contrast,
their results do not offer much support for a link between asset
return co-movement and several proxy measures of financial-side
integration, based, for example, on flow measures of bank lending
and foreign direct investment.
Our work here will also allow for country and industry factors,
as well as a global factor that affects all asset returns. In
particular, we will assess within a common framework the relative
importance of global, country, and industry factors and
the relative importance of cash flow and discount rate effects in
equity return co-movements, thus bringing together two sets of
distinctions. Furthermore, through an interaction of these two
decompositions, our estimates lead to a detailed allocation of the
covariances between pairs of return innovations. Specifically, we
can attribute variance shares of the discount rate revisions and
the cash flow effects to global, national, industry sector, and
idiosyncratic factors. Thus, for example, we can gauge the
importance of country-specific risk premiums or industry-specific
innovations to cash flows. Accordingly, we offer insight into the
extent of both international financial barriers and real-side
industry globalization. For example, cross-border same-industry
co-movement in expected cash flows could arise from exposure to
common shocks to long-term profitability, whereas any
within-country inter-industry co-movement in expected cash flows
likely reflects common exposure to national macro-economy. On the
financial side, a finding that the within-country inter-industry
co-movement in expected returns is relatively important (e.g.,
compared to the cross-border inter-industry co-movement)
would tend to suggest that discount rates include country-specific
factors, possibly as a result of barriers to global integration of
national financial markets. On the other hand, cross-border
same-industry co-movement in expected returns could result from
common exposures to changes in risk.
The next section of the paper lays out our empirical
methodology, and the following section describes the variables we
included in our specification and the data sources from which we
drew them. Section 4 contains our main results, while Section 5
reports the outcome of a robustness check using an alternative
identifying assumption, and Section 6 summarizes our
conclusions.
2 Methodology
Campbell (1991) shows that rearranging the Campbell-Shiller
(1988) log-linear approximation to the dividend discount model, and
then applying expectation operators yields:
or
where
and
Here, h is the log of the one-period return (including dividends),
g is the log dividend growth rate and (a number
slightly less than one) is a by-product of the log-linear
approximation. The underlying intuition is that a
higher-than-expected current stock return must reflect either an
increase in the expected stream of future dividends (G 0) or a decrease in future expected (or
required) stock returns (H 0).
We apply the relation to the return on the stock index (measured
in dollars) for each industry (i) in each country (k).2 We do
this by including the country-sector return (h in a vector auto-regression (VAR), which we estimate
by GMM.3 We estimate a separate system for each
country-sector return (h. We deduce the
properties of the unexpected part of the return from the estimated
VAR parameters, as well as the discount rate component (H), which
can be generated via forecasts of future returns (h. Properties of the cash flow component (G) are then
inferred from the expression given above. For simplicity, unlike
Campbell and Ammer (1993) and Ammer and Mei (1996), we do not
include interest rate or exchange rate components in our
decomposition. Those authors did not find innovations about either
future interest rates or future exchange rates to be important for
stock return variation.
We also include the corresponding industry return (h, the corresponding country return (h, and the world index return (h in
the VAR, along with variables that are likely to forecast returns.
These three other returns are similarly decomposed into their
discount rate component (H) and cash flow component (G) using the
full set of coefficient estimates from the same VAR system. We can
then characterize the importance of global, national, and sectoral
co-movements in G and H for the given country-sector return
(h. Because the statistics of interest,
such as coefficients of correlation among the derived return
components, are functions of the VAR parameters, we can generate
standard errors using the ``delta'' method. In particular, we take
numerical derivatives of a statistic with respect to the VAR
parameters and we interact this estimated gradient with the
variance-covariance matrix of the estimated VAR parameters.
3 Data
Our country-sector returns pertain to the Morgan Stanley Capital
International indexes, which in recent years have used the GICS
industry classification system (also adopted recently by the
S&P 500). Data have been reconstructed back to the beginning of
1995. Our proximate data source, the I/B/E/S Industry and Sector
Aggregates (ISA) reports mid-month prices (the Tuesday before the
third Friday) and dividend yields from which we construct monthly
return series. The ISA also reports information about equity
analysts' earnings forecasts that has been aggregated to the index
level. We use the ratio of 12-month-ahead expected index earnings
to the index price for the national and sectoral indexes as
additional variables in the VAR. This use of survey expectations
from I/B/E/S to help measure innovations in expected (or required)
future stock returns in a Vector Auto-Regression framework is
something of a departure from prior research on return
variance decompositions, although similar variables have
been used in literature that focuses on the mean of the
equity premium, such as Claus and Thomas (2001). We also
incorporate two more common variables for forecasting returns into
the framework: the World Index dividend-price ratio and the yield
spread of Baa bonds over 10-year U.S. Treasuries. Including the
four returns, we have eight variables in each of the VAR systems
that we estimate.
The ISA also includes figures on analysts' long-term earnings
growth forecasts, which in theory ought to convey information about
future returns. Nevertheless, in practice, we found that
instruments based on the long-term estimates did not improve the
power of our VARs to forecast returns.
Table 1 shows summary statistics (the individual correlation
coefficients are listed in appendix Table A1) for the raw
correlations of country-sector returns with the corresponding
industry return (h, the corresponding
country return (h, and the world index return
(h. Our sample period is March 1995 to
August 2003. On average, the national and sectoral return
correlations are equal at 66 percent, distinctly higher than the 44
percent average correlation of our 71 country-sector returns with
the MSCI World Index return. There is some variation in these
correlations. Our Japanese country-sectors, for example, tend to
have the highest national correlations but the weakest global and
sectoral correlations. Meanwhile, all three correlations tend to be
high for the Financial and the Discretionary Consumer Sectors, but
low for Utilities. The next section examines when variation in
these correlations is driven by the discount-rate component of
returns, and when it arises from the pattern of co-movements in
expected cash flows.
4 Results
Tables 2 and 3 contain a similar set of summary results for
correlations among our derived cash-flow (G) and discount-rate (H)
components of index returns.4 The full results in appendix tables A2
and A3 include standard errors in parentheses. The weak sectoral
and global correlations for Japanese country-sectors appear to be
associated more with the discount-rate component than the cash-flow
component of returns. However, most other country-sectors tend to
be more closely linked through their discount-rate components than
through their cash-flow components, suggesting a higher degree of
financial integration than of common forces driving long-term
dividend growth. The fact that the average sectoral correlation of
discount-rate components is slightly higher than the average
national correlation is further evidence against national
segmentation, suggesting instead that a pattern of co-movements in
perceived risks underlies the results. Interestingly, we find a
larger role for industry effects than do Heston and Rouwenhorst
(1994) and Griffin and Karolyi (1998) despite our using a
relatively coarse classification that divides the firms underlying
our sample into only 10 groupings. However, the importance of the
role we infer for sectoral co-movements is consistent with the
findings by Ferreira and Gama (2004) and Carrier, Errunza, and
Sarkissian (2003) that common industry components were a much more
important source of stock return variation from the mid-1990s than
they had been before.
Tables 4, 5, 6, and 7 show these results in a different way.
Table 4 (with full results and standard errors in appendix table
A5) is based on a Cholesky-style orthogonalization of the cash-flow
components (G). The global cash-flow component appears first in the
Cholesky ``ordering'', meaning that common movements between the
global G and the country, sector, or country-sector G are taken to
be part of the global G. The country and sector G come next, and
the country-sector return is listed last. Thus, movements in the
country-sector G are taken to be ``idiosyncratic'' only to the
extent that they are orthogonal to the global, country, and sector
G components. Given this ordering, we can infer a variance
decomposition of the country-sector G (into global, country,
sector, and idiosyncratic pieces) from the estimated VAR
coefficients.
The results show that on average, global, national, and sectoral
co-movements each account for roughly 20 percent of the volatility
of a country-sector's G component, with idiosyncratic variation of
about 40 percent constituting the balance. Global co-movement in G
is particularly weak for Italy, Consumer Staples, and Utilities,
and strongest for Information Technology. The results here appear
to be broadly consistent with the argument by Griffin and Karolyi
(1998) that tradable sectors are more sensitive to global product
market conditions than non-tradable sectors (Consumer Staples
includes supermarkets and there is little international trade in
electric power, for example).
Table 5 (with full results and standard errors in appendix table
A6) shows results for an alternative ordering in which the sector G
precedes the country G. The estimates are broadly similar to Table
4. On average, however, the earlier position in the Cholesky
ordering shifts a few percentage points of the variance share to
the sectoral G at the expense of the country G.
Tables 6 and 7 (with full results and standard errors in
appendix tables A7 and A8) show analogous orthogonalized
decompositions of the of the country-sector H component. Compared
to the decompositions of G in Tables 4 and 5, the global component
of H is higher (averaging 40 percent) and the idiosyncratic part of
H is less important, typically accounting for 20 percent of the
time variation in future expected returns for a country-sector
index. Again, these results are broadly consistent with a high
degree of equity market integration. However, the relative
importance of sectoral and national components is more sensitive to
the Cholesky ordering in this case. Nevertheless, we find a sizable
variance share assigned to sectoral co-movements for
country-sectors in the materials sector, and to a lesser extent in
the energy sector. This may be a manifestation of a globalized
commodity cycle and its implications for common changing
perceptions of the riskiness of participating firms.
Table 8 shows estimates obtained one more way - it puts these
orthogonalized decompositions of G and H together with the basic
Campbell (1991) decomposition of return variance into the variance
of G, the variance of H, and a covariance term. Individual results
and standard errors for the three-part Campbell decomposition of
country sector returns are in appendix table A4. Consistent with
the results of Malliaropulos (1998) for a similar group of
countries over a longer sample period, as well as Vuolteenaho's
(2002) findings for individual U.S. stocks, cash flow news
typically accounts for a large share of the return variance. Many
of the estimates for the covariance of G and -H are negative
(although in most cases not statistically distinguishable from zero
with 95 percent confidence), suggesting a weak positive association
between revisions to projected growth and revisions to required
returns. At least on a global basis, this seems consistent with the
likely effect from shocks to the investment opportunity set.
The combination results in a grand nine-part decomposition for
which we show summary statistics in Table 8. In allocating among
the G components, we use the mean of the Table 4 and Table 5
results, rather than choosing between the two orderings. Similarly,
H shares are based on the mean of the Table 6 and Table 7 results.
On average, idiosyncratic cash flow news appears to be the most
important driver of country-sector returns (comprising 36 percent
of the variance), with global, sector, and country-specific cash
flow news and global revisions to future required returns (the
world discount-rate factor) also accounting for double-digit
shares.
5 Robustness Check: An Alternative Identifying
Assumption
Here, we will check the robustness of our main results by taking
an entirely different approach to identifying the G and H
components in the Campbell relation that makes use of the I/B/E/S
earnings estimates data. Specifically, analyst's revisions in
earnings expectations generally should reflect changes in views
about future earnings and dividends, and not changes in future risk
premiums. Accordingly, we regress each stock return on current and
next period's (to allow for analysts' delays in
incorporating new information, which have been elsewhere
documented) revisions to earnings expectations. Our specification
includes their revisions to expected earnings for the next fiscal
year for the corresponding industry and country indexes and the
World index, as well as for the country-sector index in question.
G here is the fitted value from the
regression. In this case, G is orthogonal
to H by construction. We estimate these
regressions to get G and H for each of the 71 country-sector
indexes, and for the world, country, and industry indexes.
Correlations of the constructed country-sector cash-flow (G)
components with the corresponding country, sector, and global G
components are summarized in Table 9. Reassuringly, the results
here are broadly similar to the corresponding figures in Table 2
that were based on less direct estimates of the cash-flow component
of returns. In particular, the national and sectoral correlations
are distinctly higher than the global correlations, typically. The
sectoral correlations run a little higher in Table 9, with the
strongest sector effects showing up for Information Technology,
Telecom, Financials, and Materials country-sectors.
The correlations in the constructed discount-rate (H) components
(summarized in Table 10) are also broadly similar to their more
directly derived counterparts reported in Table 3. Notably, we
still see weak sectoral and global correlations for the
discount-rate components of Japanese country-sector returns,
hinting at a relative lack of global integration.
6 Conclusions
Our findings confirm previous research that finds patterns of
correlation that suggest a richer underlying structure than just a
single common global factor. Furthermore, our results suggest that
global, within-country, and same-industry effects are all important
for both of the two key components of stock returns - news about
future dividends and news about future discount rates. In
particular, within-industry covariation in news about future
discount rates appears to be just as important as within-country
covariation in the same. This result is consistent with co-movement
(other than global co-movement) in future discount rates arising
from perceptions of common elements of risk, rather than national
market segmentation. Our results also suggest that international
stock prices are driven at least in part by multiple time-varying
risk factors, and their associated risk premiums. We also find that
the idiosyncratic component of cash flow news is more important
than the global component, while the reverse is true for news about
future discount rates. This fact is also consistent with a
significant degree of global equity market integration.
References
Ammer, John and Jianping Mei (1996), ``Measuring International
Economic Linkages with Stock Market Data,'' Journal of
Finance 51.
Brooks, Robin and Marco Del Negro (2002), ``International
Diversification Strategies,'' Federal Reserve Bank of Atlanta
Working Paper 2002-23.
Brooks, Robin and Marco Del Negro (2003), ``Firm-Level Evidence
on International Stock Market Comovement,'' Federal Reserve Bank of
Atlanta Working Paper 2003-8.
Campbell, John Y. (1991), ``A Variance Decomposition for Stock
Returns,'' the H.G. Johnson Lecture to the Royal Economic Society,
Economic Journal, 101, 157-179.
Campbell, John Y. and John Ammer (1993), ``What moves the stock
and bond markets? A Variance Decomposition for Long-term Asset
Returns,'' Journal of Finance, 48, 3-37.
Campbell, John Y. and Yasushi Hamao (1992), ``Predictable
returns in the United States and Japan: A Study of Long Term
Capital Markets Integration,'' Journal of Finance, 47,
43-70.
Campbell, John Y. and Robert J. Shiller (1988), ``The
dividend-price ratio and expectations of future dividends and
discount factors,'' Review of Financial Studies, 1,
195-228.
Carrieri, Francesca, Vihang Errunza, and Sergei Sarkissian
(2003), ``The Dynamics of Geographic versus Sectoral
Diversification: A Casual Explanation,'' manuscript, McGill
University (October).
Catao, Luis, and Timmerman, Allan, 2003, ``Country and Industry
Dynamics in Stock Returns,'' IMF working paper WP/03/52.
Claus, James and Jacob Thomas (2001), ``Equity Premiums as Low
as Three Percent? Evidence from Analysts' Earnings Forecasts for
Domestic and International Stock Markets,'' Journal of
Finance 56, 1629-1666.
Connor, Greg and Robert Korajczyk (1988), ``Risk and Return in
an Equilibrium APT: Application of a New Test Methodology,''
Journal of Financial Economics, 21, 255-289.
Ferreira, Miguel A. and Paulo M. Gama (2004), ``Have World,
Country, and Industry Risks Changed Over Time? An Investigation of
the Developed Stock Markets Volatility,'' Journal of Financial and
Quantitative Analysis, forthcoming.
Ferson, Wayne and Campbell Harvey (1991), ``The Variation of
Economic Risk Premiums,'' Journal of Political Economy 99,
385-415.
Forbes, Kristin, and Chinn, Menzie, 2003, ``A Decomposition of
Global linkages in Financial Markets over Time,'' NBER working
paper 9555.
Griffin, John M. and G. Andrew Karolyi (1998), ``Another Look at
the Role of the Industrial Structure of Markets for International
Diversification Strategies,'' Journal of Financial
Economics 50(3):351-373.
Heston, Steven L. and K. Geert Rouwenhorst (1994), ``Does
Industrial Structure Explain the Benefits of International
Diversification?'' Journal of Financial Economics 36,
3-27.
Kodres, Laura E., and Matt Pritsker (2002), ``A Rational
Expectations Model of Financial Contagion,'' Journal of
Finance 57, 769-799.
Malliaropulos, Dmitrios (1998), ``Excess Stock Returns and News:
Evidence form European Markets,'' European Financial
Management 4(1), 29-46.
Page, Sebastien and Anne-Sophie Van Royen (2001), ``The Multiple
Dimensions of Asset Allocation: Countries, Sectors, or Factors?''
State Street Associates working paper.
Stockman, Alan (1988) ``Sectoral and national aggregate
disturbances to industrial output in seven European countries,''
Journal of Money and Economics 21, 387-409.
Vuolteenaho, Tuomo, 2002, ``What Drives Firm-Level Stock
Returns?'' Journal of Finance 57, No.1, p.233-264
Table 1: Correlations of Dollar-Denominated Returns -
Summary Results
Industry-Sector versus Corresponding Broader
Aggregates
average for: |
N |
global |
national |
sectoral |
Germany |
9 |
0.45 |
0.64 |
0.60 |
France |
9 |
0.51 |
0.66 |
0.66 |
Italy |
8 |
0.40 |
0.74 |
0.54 |
Netherlands |
7 |
0.48 |
0.65 |
0.71 |
U.K. |
10 |
0.40 |
0.60 |
0.71 |
Japan |
9 |
0.32 |
0.76 |
0.51 |
Canada |
9 |
0.42 |
0.54 |
0.66 |
U.S. |
10 |
0.53 |
0.67 |
0.89 |
Energy |
7 |
0.30 |
0.56 |
0.71 |
Materials |
8 |
0.41 |
0.61 |
0.71 |
Industrials |
8 |
0.54 |
0.77 |
0.65 |
Discretionary |
8 |
0.61 |
0.77 |
0.73 |
Staples |
8 |
0.33 |
0.56 |
0.58 |
Healthcare |
6 |
0.39 |
0.61 |
0.59 |
Financials |
8 |
0.54 |
0.82 |
0.74 |
InfoTech |
7 |
0.54 |
0.69 |
0.71 |
Telecom |
4 |
0.45 |
0.69 |
0.72 |
Utilities |
7 |
0.24 |
0.48 |
0.52 |
all of above |
71 |
0.44 |
0.66 |
0.66 |
Table 2: Correlations of Cash-Flow-Revision Components
(G) of Returns - Summary Results
Industry-Sector versus Corresponding Broader
Aggregates
average for: |
N |
global |
national |
sectoral |
Germany |
9 |
0.38 |
0.55 |
0.52 |
France |
9 |
0.45 |
0.64 |
0.61 |
Italy |
8 |
0.12 |
0.56 |
0.31 |
Netherlands |
7 |
0.52 |
0.63 |
0.63 |
U.K. |
10 |
0.41 |
0.51 |
0.66 |
Japan |
9 |
0.34 |
0.77 |
0.49 |
Canada |
9 |
0.29 |
0.45 |
0.47 |
U.S. |
10 |
0.51 |
0.60 |
0.86 |
Energy |
7 |
0.28 |
0.51 |
0.66 |
Materials |
8 |
0.41 |
0.61 |
0.65 |
Industrials |
8 |
0.46 |
0.76 |
0.53 |
Discretionary |
8 |
0.54 |
0.67 |
0.60 |
Staples |
8 |
0.23 |
0.44 |
0.47 |
Healthcare |
6 |
0.31 |
0.49 |
0.47 |
Financials |
8 |
0.45 |
0.75 |
0.64 |
InfoTech |
7 |
0.58 |
0.69 |
0.73 |
Telecom |
4 |
0.32 |
0.54 |
0.69 |
Utilities |
7 |
0.15 |
0.33 |
0.36 |
all of above |
71 |
0.38 |
0.59 |
0.58 |
Table 3: Correlations of Discount-Rate Components (H) of
Returns - Summary Results
Industry-Sector versus Corresponding Broader
Aggregates
average
for: |
N |
global |
national |
sectoral |
Germany |
9 |
0.79 |
0.85 |
0.75 |
France |
9 |
0.65 |
0.74 |
0.73 |
Italy |
8 |
0.60 |
0.66 |
0.75 |
Netherlands |
7 |
0.56 |
0.77 |
0.51 |
U.K. |
10 |
0.68 |
0.74 |
0.91 |
Japan |
9 |
0.15 |
0.58 |
0.36 |
Canada |
9 |
0.31 |
0.50 |
0.59 |
U.S. |
10 |
0.58 |
0.70 |
0.92 |
Energy |
7 |
0.29 |
0.43 |
0.58 |
Materials |
8 |
0.21 |
0.34 |
0.63 |
Industrials |
8 |
0.63 |
0.85 |
0.68 |
Discretionary |
8 |
0.74 |
0.81 |
0.76 |
Staples |
8 |
0.56 |
0.66 |
0.67 |
Healthcare |
6 |
0.51 |
0.79 |
0.54 |
Financials |
8 |
0.74 |
0.89 |
0.84 |
InfoTech |
7 |
0.63 |
0.86 |
0.83 |
Telecom |
4 |
0.83 |
0.90 |
0.87 |
Utilities |
7 |
0.36 |
0.46 |
0.66 |
all of above |
71 |
0.54 |
0.69 |
0.70 |
Table 4: Orthogonalized Decomposition of Cash Flow News
Component (G) - Summary Results
Cholesky Ordering: Global, National, Sectoral,
Idiosyncratic (shown as contribution to variance)
average
for: |
N |
global |
national |
sectoral |
idiosyncratic |
Germany |
9 |
0.16 |
0.19 |
0.11 |
0.53 |
France |
9 |
0.21 |
0.22 |
0.16 |
0.40 |
Italy |
8 |
0.07 |
0.34 |
0.07 |
0.52 |
Netherlands |
7 |
0.29 |
0.14 |
0.14 |
0.42 |
U.K. |
10 |
0.20 |
0.13 |
0.23 |
0.43 |
Japan |
9 |
0.18 |
0.51 |
0.06 |
0.25 |
Canada |
9 |
0.18 |
0.17 |
0.16 |
0.49 |
U.S. |
10 |
0.29 |
0.11 |
0.41 |
0.19 |
Energy |
7 |
0.16 |
0.20 |
0.33 |
0.32 |
Materials |
8 |
0.20 |
0.21 |
0.22 |
0.36 |
Industrials |
8 |
0.28 |
0.33 |
0.07 |
0.32 |
Discretionary |
8 |
0.32 |
0.19 |
0.06 |
0.43 |
Staples |
8 |
0.08 |
0.17 |
0.21 |
0.55 |
Healthcare |
6 |
0.14 |
0.20 |
0.21 |
0.45 |
Financials |
8 |
0.21 |
0.39 |
0.15 |
0.25 |
InfoTech |
7 |
0.35 |
0.20 |
0.14 |
0.31 |
Telecom |
4 |
0.11 |
0.21 |
0.33 |
0.35 |
Utilities |
7 |
0.08 |
0.13 |
0.13 |
0.65 |
all of above |
71 |
0.20 |
0.23 |
0.18 |
0.40 |
Table 5: Orthogonalized Decomposition of Cash Flow News
Component (G) - Summary Results
Cholesky Ordering: Global, Sectoral, National,
Idiosyncratic (shown as contribution to variance)
average
for: |
N |
global |
national |
sectoral |
idiosyncratic |
Germany |
9 |
0.16 |
0.15 |
0.15 |
0.53 |
France |
9 |
0.21 |
0.18 |
0.20 |
0.40 |
Italy |
8 |
0.07 |
0.29 |
0.13 |
0.52 |
Netherlands |
7 |
0.29 |
0.09 |
0.19 |
0.42 |
U.K. |
10 |
0.20 |
0.09 |
0.27 |
0.43 |
Japan |
9 |
0.18 |
0.41 |
0.16 |
0.25 |
Canada |
9 |
0.18 |
0.11 |
0.22 |
0.49 |
U.S. |
10 |
0.29 |
0.06 |
0.46 |
0.19 |
Energy |
7 |
0.16 |
0.12 |
0.40 |
0.32 |
Materials |
8 |
0.20 |
0.15 |
0.29 |
0.36 |
Industrials |
8 |
0.28 |
0.27 |
0.13 |
0.32 |
Discretionary |
8 |
0.32 |
0.15 |
0.09 |
0.43 |
Staples |
8 |
0.08 |
0.14 |
0.23 |
0.55 |
Healthcare |
6 |
0.14 |
0.15 |
0.26 |
0.45 |
Financials |
8 |
0.21 |
0.32 |
0.22 |
0.25 |
InfoTech |
7 |
0.35 |
0.12 |
0.21 |
0.31 |
Telecom |
4 |
0.11 |
0.13 |
0.41 |
0.35 |
Utilities |
7 |
0.08 |
0.12 |
0.15 |
0.65 |
all of above |
71 |
0.20 |
0.17 |
0.23 |
0.40 |
Table 6: Orthogonalized Decomposition of Discount-Rate
Component (H) - Summary of Results
Cholesky Ordering: Global, National, Sectoral,
Idiosyncratic (shown as contribution to variance)
average
for: |
N |
global |
national |
sectoral |
idiosyncratic |
Germany |
9 |
0.63 |
0.14 |
0.04 |
0.18 |
France |
9 |
0.47 |
0.27 |
0.11 |
0.15 |
Italy |
8 |
0.44 |
0.20 |
0.13 |
0.23 |
Netherlands |
7 |
0.45 |
0.33 |
0.05 |
0.16 |
U.K. |
10 |
0.51 |
0.11 |
0.28 |
0.10 |
Japan |
9 |
0.09 |
0.38 |
0.12 |
0.41 |
Canada |
9 |
0.18 |
0.37 |
0.16 |
0.28 |
U.S. |
10 |
0.41 |
0.19 |
0.30 |
0.10 |
Energy |
7 |
0.18 |
0.27 |
0.19 |
0.35 |
Materials |
8 |
0.21 |
0.22 |
0.38 |
0.20 |
Industrials |
8 |
0.46 |
0.34 |
0.05 |
0.16 |
Discretionary |
8 |
0.57 |
0.18 |
0.09 |
0.16 |
Staples |
8 |
0.40 |
0.15 |
0.22 |
0.23 |
Healthcare |
6 |
0.33 |
0.33 |
0.09 |
0.25 |
Financials |
8 |
0.58 |
0.23 |
0.10 |
0.09 |
InfoTech |
7 |
0.44 |
0.36 |
0.11 |
0.09 |
Telecom |
4 |
0.69 |
0.16 |
0.02 |
0.12 |
Utilities |
7 |
0.21 |
0.21 |
0.25 |
0.34 |
all of above |
71 |
0.40 |
0.25 |
0.16 |
0.20 |
Table 7: Orthogonalized Decomposition of Discount-Rate
Component (H) - Summary of Results
Cholesky Ordering: Global, Sectoral, National,
Idiosyncratic (shown as contribution to variance)
average
for: |
N |
global |
national |
sectoral |
idiosyncratic |
Germany |
9 |
0.63 |
0.09 |
0.10 |
0.18 |
France |
9 |
0.47 |
0.15 |
0.24 |
0.15 |
Italy |
8 |
0.44 |
0.14 |
0.19 |
0.23 |
Netherlands |
7 |
0.45 |
0.22 |
0.17 |
0.16 |
U.K. |
10 |
0.51 |
0.02 |
0.37 |
0.10 |
Japan |
9 |
0.09 |
0.27 |
0.23 |
0.41 |
Canada |
9 |
0.18 |
0.23 |
0.30 |
0.28 |
U.S. |
10 |
0.41 |
0.03 |
0.46 |
0.10 |
Energy |
7 |
0.18 |
0.06 |
0.40 |
0.35 |
Materials |
8 |
0.21 |
0.10 |
0.49 |
0.20 |
Industrials |
8 |
0.46 |
0.27 |
0.11 |
0.16 |
Discretionary |
8 |
0.57 |
0.17 |
0.10 |
0.16 |
Staples |
8 |
0.40 |
0.08 |
0.29 |
0.23 |
Healthcare |
6 |
0.33 |
0.26 |
0.15 |
0.25 |
Financials |
8 |
0.58 |
0.14 |
0.19 |
0.09 |
InfoTech |
7 |
0.44 |
0.10 |
0.37 |
0.09 |
Telecom |
4 |
0.69 |
0.10 |
0.09 |
0.12 |
Utilities |
7 |
0.21 |
0.09 |
0.37 |
0.34 |
all of above |
71 |
0.40 |
0.14 |
0.26 |
0.20 |
Table 8: average combination of GCSI and G vs. H
breakdown by country and sector
(expressed as fractional contribution to stock return
variance)
average
for: |
N |
global cash flow news |
global discount rate news |
country cash flow news |
country discount rate news |
industry cash flow news |
industry discount rate news |
residual cash flow news |
residual discount rate news |
cross terms |
Germany |
9 |
0.15 |
0.23 |
0.16 |
0.04 |
0.14 |
0.03 |
0.46 |
0.04 |
-0.25 |
France |
9 |
0.18 |
0.09 |
0.17 |
0.04 |
0.16 |
0.03 |
0.35 |
0.03 |
-0.05 |
Italy |
8 |
0.06 |
0.15 |
0.27 |
0.07 |
0.08 |
0.04 |
0.41 |
0.06 |
-0.15 |
Netherlands |
7 |
0.31 |
0.14 |
0.11 |
0.07 |
0.15 |
0.02 |
0.40 |
0.05 |
-0.24 |
U.K. |
10 |
0.20 |
0.17 |
0.08 |
0.02 |
0.20 |
0.09 |
0.34 |
0.03 |
-0.14 |
Japan |
9 |
0.22 |
0.01 |
0.55 |
0.04 |
0.13 |
0.03 |
0.29 |
0.05 |
-0.32 |
Canada |
9 |
0.20 |
0.05 |
0.15 |
0.10 |
0.17 |
0.08 |
0.51 |
0.07 |
-0.34 |
U.S. |
10 |
0.21 |
0.09 |
0.05 |
0.02 |
0.28 |
0.08 |
0.14 |
0.02 |
0.11 |
Energy |
7 |
0.14 |
0.04 |
0.16 |
0.02 |
0.31 |
0.05 |
0.27 |
0.06 |
-0.05 |
Materials |
8 |
0.17 |
0.05 |
0.17 |
0.03 |
0.19 |
0.08 |
0.31 |
0.03 |
-0.03 |
Industrials |
8 |
0.31 |
0.10 |
0.30 |
0.09 |
0.11 |
0.02 |
0.34 |
0.04 |
-0.31 |
Discretionary |
8 |
0.26 |
0.15 |
0.15 |
0.02 |
0.06 |
0.02 |
0.36 |
0.04 |
-0.06 |
Staples |
8 |
0.07 |
0.10 |
0.13 |
0.03 |
0.12 |
0.07 |
0.42 |
0.03 |
0.01 |
Healthcare |
6 |
0.12 |
0.09 |
0.18 |
0.10 |
0.14 |
0.04 |
0.38 |
0.07 |
-0.11 |
Financials |
8 |
0.18 |
0.22 |
0.33 |
0.05 |
0.14 |
0.05 |
0.21 |
0.03 |
-0.21 |
InfoTech |
7 |
0.40 |
0.12 |
0.19 |
0.06 |
0.19 |
0.06 |
0.34 |
0.02 |
-0.39 |
Telecom |
4 |
0.12 |
0.25 |
0.16 |
0.04 |
0.38 |
0.02 |
0.34 |
0.04 |
-0.35 |
Utilities |
7 |
0.08 |
0.08 |
0.12 |
0.04 |
0.15 |
0.09 |
0.63 |
0.08 |
-0.27 |
all of above |
71 |
0.19 |
0.11 |
0.19 |
0.05 |
0.17 |
0.05 |
0.36 |
0.04 |
-0.17 |
Table 9: Correlations of Cash-Flow-Revision Components
(G) of Returns - Summary Results
Industry-Sector versus Corresponding Broader
Aggregates
average
for: |
N |
global |
national |
sectoral |
Germany |
9 |
0.52 |
0.58 |
0.60 |
France |
9 |
0.45 |
0.59 |
0.62 |
Italy |
8 |
0.29 |
0.58 |
0.45 |
Netherlands |
7 |
0.49 |
0.61 |
0.61 |
U.K. |
10 |
0.31 |
0.38 |
0.72 |
Japan |
9 |
0.34 |
0.54 |
0.55 |
Canada |
9 |
0.39 |
0.47 |
0.60 |
U.S. |
10 |
0.36 |
0.57 |
0.71 |
Energy |
7 |
0.35 |
0.47 |
0.71 |
Materials |
8 |
0.41 |
0.59 |
0.75 |
Industrials |
8 |
0.59 |
0.81 |
0.58 |
Discretionary |
8 |
0.65 |
0.71 |
0.71 |
Staples |
8 |
0.16 |
0.30 |
0.14 |
Healthcare |
6 |
0.28 |
0.44 |
0.46 |
Financials |
8 |
0.49 |
0.67 |
0.77 |
InfoTech |
7 |
0.64 |
0.70 |
0.80 |
Telecom |
4 |
0.30 |
0.46 |
0.79 |
Utilities |
7 |
-0.05 |
0.11 |
0.46 |
all of above |
71 |
0.39 |
0.54 |
0.61 |
Note: Results (unlike Table 2) are based on decomposition which
treats the part of the return that is explained by I/B/E/S earnings
forecast revisions as the cash-flow news component. The two
components (G and H) are in this case orthogonal by
construction.
Table 10: Correlations of Discount-Rate Components (H)
of Returns - Summary Results
Industry-Sector versus Corresponding Broader
Aggregates
average
for: |
N |
global |
national |
sectoral |
Germany |
9 |
0.38 |
0.60 |
0.54 |
France |
9 |
0.46 |
0.63 |
0.62 |
Italy |
8 |
0.38 |
0.71 |
0.52 |
Netherlands |
7 |
0.39 |
0.61 |
0.67 |
U.K. |
10 |
0.33 |
0.56 |
0.66 |
Japan |
9 |
0.27 |
0.73 |
0.48 |
Canada |
9 |
0.38 |
0.52 |
0.63 |
U.S. |
10 |
0.46 |
0.66 |
0.85 |
Energy |
7 |
0.28 |
0.54 |
0.68 |
Materials |
8 |
0.33 |
0.55 |
0.69 |
Industrials |
8 |
0.48 |
0.73 |
0.59 |
Discretionary |
8 |
0.55 |
0.74 |
0.68 |
Staples |
8 |
0.33 |
0.57 |
0.57 |
Healthcare |
6 |
0.38 |
0.60 |
0.58 |
Financials |
8 |
0.42 |
0.73 |
0.69 |
InfoTech |
7 |
0.40 |
0.60 |
0.61 |
Telecom |
4 |
0.37 |
0.68 |
0.66 |
Utilities |
7 |
0.26 |
0.49 |
0.51 |
all of above |
71 |
0.38 |
0.63 |
0.63 |
Note: Results (unlike Table 3) are based on decomposition which
treats the part of the return that is explained by I/B/E/S earnings
forecast revisions as the cash-flow news component. The two
components (G and H) are in this case orthogonal by
construction.
Table A1 (2 pages): Correlations of Dollar-Denominated
Returns (March 1995 to August 2003)
Industry-Sector versus Corresponding Broader
Aggregates
country |
sector |
global |
national |
sectoral |
Germany |
Materials |
0.55 |
0.72 |
0.70 |
Germany |
Industrials |
0.62 |
0.79 |
0.65 |
Germany |
Discretionary |
0.57 |
0.75 |
0.67 |
Germany |
Staples |
0.26 |
0.45 |
0.34 |
Germany |
Healthcare |
0.37 |
0.49 |
0.51 |
Germany |
Financials |
0.59 |
0.86 |
0.73 |
Germany |
InfoTech |
0.40 |
0.60 |
0.55 |
Germany |
Telecom |
0.41 |
0.64 |
0.73 |
Germany |
Utilities |
0.25 |
0.44 |
0.52 |
France |
Energy |
0.37 |
0.58 |
0.72 |
France |
Materials |
0.46 |
0.52 |
0.76 |
France |
Industrials |
0.56 |
0.76 |
0.58 |
France |
Discretionary |
0.73 |
0.85 |
0.77 |
France |
Staples |
0.55 |
0.66 |
0.51 |
France |
Healthcare |
0.45 |
0.50 |
0.61 |
France |
Financials |
0.60 |
0.73 |
0.79 |
France |
InfoTech |
0.54 |
0.72 |
0.69 |
France |
Utilities |
0.35 |
0.65 |
0.49 |
Italy |
Energy |
0.21 |
0.56 |
0.51 |
Italy |
Materials |
0.36 |
0.68 |
0.56 |
Italy |
Industrials |
0.43 |
0.79 |
0.41 |
Italy |
Discretionary |
0.59 |
0.85 |
0.69 |
Italy |
Staples |
0.27 |
0.58 |
0.38 |
Italy |
Financials |
0.58 |
0.87 |
0.65 |
Italy |
Telecom |
0.49 |
0.86 |
0.68 |
Italy |
Utilities |
0.28 |
0.72 |
0.44 |
Netherlands |
Energy |
0.38 |
0.65 |
0.88 |
Netherlands |
Materials |
0.32 |
0.52 |
0.59 |
Netherlands |
Industrials |
0.56 |
0.70 |
0.64 |
Netherlands |
Discretionary |
0.52 |
0.59 |
0.62 |
Netherlands |
Staples |
0.40 |
0.64 |
0.82 |
Netherlands |
Financials |
0.60 |
0.83 |
0.78 |
Netherlands |
InfoTech |
0.57 |
0.64 |
0.65 |
U.K. |
Energy |
0.30 |
0.54 |
0.80 |
U.K. |
Materials |
0.41 |
0.48 |
0.83 |
U.K. |
Industrials |
0.49 |
0.62 |
0.62 |
U.K. |
Discretionary |
0.62 |
0.64 |
0.75 |
U.K. |
Staples |
0.20 |
0.49 |
0.75 |
U.K. |
Healthcare |
0.38 |
0.69 |
0.74 |
U.K. |
Financials |
0.52 |
0.87 |
0.80 |
U.K. |
InfoTech |
0.46 |
0.46 |
0.58 |
U.K. |
Telecom |
0.42 |
0.66 |
0.72 |
U.K. |
Utilities |
0.20 |
0.54 |
0.50 |
Japan |
Energy |
0.23 |
0.66 |
0.40 |
Japan |
Materials |
0.35 |
0.83 |
0.58 |
Japan |
Industrials |
0.37 |
0.94 |
0.62 |
Japan |
Discretionary |
0.51 |
0.88 |
0.68 |
Japan |
Staples |
0.25 |
0.77 |
0.36 |
Japan |
Healthcare |
0.34 |
0.74 |
0.41 |
Japan |
Financials |
0.25 |
0.87 |
0.48 |
Japan |
InfoTech |
0.52 |
0.77 |
0.73 |
Japan |
Utilities |
0.06 |
0.43 |
0.35 |
Canada |
Energy |
0.24 |
0.44 |
0.75 |
Canada |
Materials |
0.34 |
0.49 |
0.83 |
Canada |
Industrials |
0.57 |
0.67 |
0.75 |
Canada |
Discretionary |
0.62 |
0.71 |
0.73 |
Canada |
Staples |
0.36 |
0.36 |
0.52 |
Canada |
Healthcare |
0.31 |
0.58 |
0.31 |
Canada |
Financials |
0.53 |
0.63 |
0.78 |
Canada |
InfoTech |
0.60 |
0.82 |
0.77 |
Canada |
Utilities |
0.19 |
0.13 |
0.50 |
U.S. |
Energy |
0.38 |
0.50 |
0.92 |
U.S. |
Materials |
0.48 |
0.61 |
0.85 |
U.S. |
Industrials |
0.74 |
0.89 |
0.91 |
U.S. |
Discretionary |
0.74 |
0.86 |
0.92 |
U.S. |
Staples |
0.37 |
0.52 |
0.93 |
U.S. |
Healthcare |
0.47 |
0.68 |
0.95 |
U.S. |
Financials |
0.64 |
0.87 |
0.88 |
U.S. |
InfoTech |
0.69 |
0.80 |
0.97 |
U.S. |
Telecom |
0.47 |
0.58 |
0.75 |
U.S. |
Utilities |
0.35 |
0.42 |
0.82 |
Table A2 (2 pages): Correlations of Cash-Flow-Revision
Components (G) of Returns
Industry-Sector versus Corresponding Broader Aggregates
(standard errors in parentheses)
country |
sector |
global |
national |
sectoral |
Germany |
Materials |
0.54 ( 0.14) |
0.68 ( 0.12) |
0.66 ( 0.13) |
Germany |
Industrials |
0.47 ( 0.19) |
0.74 ( 0.12) |
0.50 ( 0.18) |
Germany |
Discretionary |
0.33 ( 0.16) |
0.47 ( 0.21) |
0.40 ( 0.21) |
Germany |
Staples |
0.11 ( 0.20) |
0.28 ( 0.22) |
0.24 ( 0.22) |
Germany |
Healthcare |
0.40 ( 0.23) |
0.36 ( 0.27) |
0.63 ( 0.16) |
Germany |
Financials |
0.60 ( 0.15) |
0.89 ( 0.05) |
0.60 ( 0.14) |
Germany |
InfoTech |
0.23 ( 0.22) |
0.58 ( 0.17) |
0.46 ( 0.21) |
Germany |
Telecom |
0.43 ( 0.19) |
0.63 ( 0.16) |
0.84 ( 0.07) |
Germany |
Utilities |
0.31 ( 0.24) |
0.31 ( 0.22) |
0.38 ( 0.22) |
France |
Energy |
0.44 ( 0.27) |
0.61 ( 0.18) |
0.81 ( 0.09) |
France |
Materials |
0.40 ( 0.20) |
0.57 ( 0.20) |
0.72 ( 0.12) |
France |
Industrials |
0.38 ( 0.20) |
0.73 ( 0.10) |
0.29 ( 0.26) |
France |
Discretionary |
0.63 ( 0.14) |
0.80 ( 0.07) |
0.68 ( 0.13) |
France |
Staples |
0.39 ( 0.20) |
0.46 ( 0.27) |
0.60 ( 0.18) |
France |
Healthcare |
0.34 ( 0.25) |
0.37 ( 0.26) |
0.56 ( 0.16) |
France |
Financials |
0.49 ( 0.17) |
0.71 ( 0.13) |
0.70 ( 0.12) |
France |
InfoTech |
0.60 ( 0.19) |
0.82 ( 0.10) |
0.75 ( 0.13) |
France |
Utilities |
0.39 ( 0.24) |
0.69 ( 0.13) |
0.39 ( 0.27) |
Italy |
Energy |
-0.14 ( 0.23) |
0.21 ( 0.19) |
0.14 ( 0.23) |
Italy |
Materials |
0.14 ( 0.28) |
0.65 ( 0.14) |
0.40 ( 0.19) |
Italy |
Industrials |
-0.09 ( 0.26) |
0.63 ( 0.17) |
-0.13 ( 0.28) |
Italy |
Discretionary |
0.55 ( 0.19) |
0.81 ( 0.09) |
0.68 ( 0.17) |
Italy |
Staples |
0.05 ( 0.24) |
0.39 ( 0.23) |
0.09 ( 0.29) |
Italy |
Financials |
0.38 ( 0.26) |
0.79 ( 0.13) |
0.56 ( 0.19) |
Italy |
Telecom |
0.20 ( 0.25) |
0.67 ( 0.13) |
0.58 ( 0.12) |
Italy |
Utilities |
-0.09 ( 0.21) |
0.33 ( 0.25) |
0.14 ( 0.21) |
Netherlands |
Energy |
0.57 ( 0.24) |
0.64 ( 0.17) |
0.92 ( 0.04) |
Netherlands |
Materials |
0.60 ( 0.18) |
0.72 ( 0.12) |
0.46 ( 0.21) |
Netherlands |
Industrials |
0.67 ( 0.16) |
0.77 ( 0.11) |
0.74 ( 0.13) |
Netherlands |
Discretionary |
0.25 ( 0.26) |
0.29 ( 0.27) |
0.19 ( 0.26) |
Netherlands |
Staples |
0.39 ( 0.26) |
0.52 ( 0.25) |
0.78 ( 0.08) |
Netherlands |
Financials |
0.64 ( 0.15) |
0.83 ( 0.09) |
0.78 ( 0.10) |
Netherlands |
InfoTech |
0.55 ( 0.19) |
0.67 ( 0.15) |
0.57 ( 0.19) |
U.K. |
Energy |
0.47 ( 0.27) |
0.53 ( 0.21) |
0.86 ( 0.08) |
U.K. |
Materials |
0.60 ( 0.15) |
0.59 ( 0.13) |
0.83 ( 0.07) |
U.K. |
Industrials |
0.65 ( 0.13) |
0.77 ( 0.09) |
0.67 ( 0.12) |
U.K. |
Discretionary |
0.52 ( 0.18) |
0.47 ( 0.19) |
0.65 ( 0.14) |
U.K. |
Staples |
0.05 ( 0.20) |
0.37 ( 0.18) |
0.53 ( 0.13) |
U.K. |
Healthcare |
0.32 ( 0.24) |
0.42 ( 0.18) |
0.64 ( 0.14) |
U.K. |
Financials |
0.35 ( 0.28) |
0.72 ( 0.16) |
0.64 ( 0.15) |
U.K. |
InfoTech |
0.63 ( 0.13) |
0.37 ( 0.27) |
0.71 ( 0.14) |
U.K. |
Telecom |
0.28 ( 0.18) |
0.39 ( 0.14) |
0.72 ( 0.11) |
U.K. |
Utilities |
0.24 ( 0.22) |
0.45 ( 0.14) |
0.33 ( 0.19) |
Japan |
Energy |
0.03 ( 0.35) |
0.63 ( 0.23) |
0.31 ( 0.29) |
Japan |
Materials |
0.28 ( 0.26) |
0.85 ( 0.07) |
0.64 ( 0.15) |
Japan |
Industrials |
0.26 ( 0.28) |
0.93 ( 0.03) |
0.52 ( 0.20) |
Japan |
Discretionary |
0.64 ( 0.15) |
0.90 ( 0.05) |
0.65 ( 0.15) |
Japan |
Staples |
0.36 ( 0.22) |
0.77 ( 0.11) |
0.42 ( 0.19) |
Japan |
Healthcare |
0.56 ( 0.24) |
0.83 ( 0.08) |
0.35 ( 0.26) |
Japan |
Financials |
0.39 ( 0.25) |
0.90 ( 0.06) |
0.52 ( 0.20) |
Japan |
InfoTech |
0.65 ( 0.17) |
0.82 ( 0.09) |
0.79 ( 0.12) |
Japan |
Utilities |
-0.13 ( 0.31) |
0.26 ( 0.28) |
0.26 ( 0.32) |
Canada |
Energy |
0.05 ( 0.32) |
0.34 ( 0.28) |
0.64 ( 0.19) |
Canada |
Materials |
0.23 ( 0.23) |
0.33 ( 0.20) |
0.64 ( 0.15) |
Canada |
Industrials |
0.65 ( 0.17) |
0.72 ( 0.14) |
0.81 ( 0.11) |
Canada |
Discretionary |
0.64 ( 0.14) |
0.72 ( 0.10) |
0.67 ( 0.13) |
Canada |
Staples |
0.35 ( 0.20) |
0.41 ( 0.20) |
0.26 ( 0.30) |
Canada |
Healthcare |
-0.15 ( 0.31) |
0.45 ( 0.26) |
-0.31 ( 0.30) |
Canada |
Financials |
0.30 ( 0.24) |
0.52 ( 0.18) |
0.55 ( 0.21) |
Canada |
InfoTech |
0.65 ( 0.16) |
0.80 ( 0.11) |
0.85 ( 0.08) |
Canada |
Utilities |
-0.16 ( 0.22) |
-0.23 ( 0.27) |
0.16 ( 0.21) |
U.S. |
Energy |
0.57 ( 0.23) |
0.62 ( 0.21) |
0.93 ( 0.04) |
U.S. |
Materials |
0.51 ( 0.21) |
0.48 ( 0.23) |
0.87 ( 0.06) |
U.S. |
Industrials |
0.70 ( 0.12) |
0.78 ( 0.10) |
0.88 ( 0.07) |
U.S. |
Discretionary |
0.78 ( 0.09) |
0.86 ( 0.08) |
0.89 ( 0.05) |
U.S. |
Staples |
0.19 ( 0.29) |
0.29 ( 0.26) |
0.86 ( 0.08) |
U.S. |
Healthcare |
0.37 ( 0.27) |
0.55 ( 0.22) |
0.93 ( 0.03) |
U.S. |
Financials |
0.43 ( 0.21) |
0.61 ( 0.17) |
0.74 ( 0.10) |
U.S. |
InfoTech |
0.72 ( 0.13) |
0.76 ( 0.13) |
0.97 ( 0.01) |
U.S. |
Telecom |
0.37 ( 0.23) |
0.48 ( 0.23) |
0.64 ( 0.16) |
U.S. |
Utilities |
0.48 ( 0.26) |
0.53 ( 0.26) |
0.85 ( 0.10) |
Table A3 (2 pages): Correlations of Discount-Rate
Components (H) of Returns
Industry-Sector versus Corresponding Broader Aggregates
(standard errors in parentheses)
country |
sector |
global |
national |
sectoral |
Germany |
Materials |
0.90 ( 0.10) |
0.88 ( 0.12) |
0.75 ( 0.23) |
Germany |
Industrials |
0.82 ( 0.28) |
0.86 ( 0.19) |
0.89 ( 0.26) |
Germany |
Discretionary |
0.92 ( 0.08) |
0.84 ( 0.24) |
0.85 ( 0.15) |
Germany |
Staples |
0.57 ( 0.40) |
0.55 ( 0.38) |
0.34 ( 0.47) |
Germany |
Healthcare |
0.64 ( 0.37) |
0.82 ( 0.18) |
0.39 ( 0.43) |
Germany |
Financials |
0.77 ( 0.30) |
0.94 ( 0.08) |
0.71 ( 0.30) |
Germany |
InfoTech |
0.79 ( 0.32) |
0.96 ( 0.07) |
0.91 ( 0.15) |
Germany |
Telecom |
0.92 ( 0.11) |
0.89 ( 0.14) |
0.96 ( 0.04) |
Germany |
Utilities |
0.77 ( 0.22) |
0.90 ( 0.13) |
0.98 ( 0.03) |
France |
Energy |
0.41 ( 0.61) |
0.59 ( 0.53) |
0.66 ( 0.38) |
France |
Materials |
0.65 ( 0.48) |
0.39 ( 0.59) |
0.86 ( 0.26) |
France |
Industrials |
0.85 ( 0.29) |
0.91 ( 0.13) |
0.87 ( 0.23) |
France |
Discretionary |
0.90 ( 0.09) |
0.85 ( 0.14) |
0.88 ( 0.14) |
France |
Staples |
0.90 ( 0.21) |
0.97 ( 0.04) |
0.39 ( 0.35) |
France |
Healthcare |
0.60 ( 0.52) |
0.77 ( 0.38) |
0.53 ( 0.37) |
France |
Financials |
0.78 ( 0.29) |
0.78 ( 0.22) |
0.96 ( 0.08) |
France |
InfoTech |
0.49 ( 0.46) |
0.84 ( 0.19) |
0.77 ( 0.22) |
France |
Utilities |
0.23 ( 0.47) |
0.59 ( 0.29) |
0.64 ( 0.44) |
Italy |
Energy |
0.56 ( 0.41) |
0.50 ( 0.39) |
0.75 ( 0.37) |
Italy |
Materials |
-0.15 ( 1.31) |
-0.03 ( 1.19) |
0.66 ( 0.84) |
Italy |
Industrials |
0.62 ( 0.34) |
0.81 ( 0.14) |
0.67 ( 0.36) |
Italy |
Discretionary |
0.61 ( 0.43) |
0.80 ( 0.29) |
0.63 ( 0.44) |
Italy |
Staples |
0.85 ( 0.22) |
0.64 ( 0.36) |
0.91 ( 0.17) |
Italy |
Financials |
0.78 ( 0.31) |
0.85 ( 0.20) |
0.91 ( 0.15) |
Italy |
Telecom |
0.76 ( 0.26) |
0.95 ( 0.06) |
0.84 ( 0.18) |
Italy |
Utilities |
0.71 ( 0.30) |
0.80 ( 0.27) |
0.61 ( 0.42) |
Netherlands |
Energy |
0.53 ( 0.51) |
0.84 ( 0.18) |
0.93 ( 0.08) |
Netherlands |
Materials |
-0.18 ( 0.56) |
0.43 ( 0.44) |
-0.58 ( 0.43) |
Netherlands |
Industrials |
0.25 ( 0.44) |
0.63 ( 0.32) |
0.15 ( 0.53) |
Netherlands |
Discretionary |
0.76 ( 0.24) |
0.75 ( 0.31) |
0.57 ( 0.32) |
Netherlands |
Staples |
0.76 ( 0.32) |
0.90 ( 0.09) |
0.85 ( 0.18) |
Netherlands |
Financials |
0.92 ( 0.11) |
0.97 ( 0.04) |
0.88 ( 0.12) |
Netherlands |
InfoTech |
0.89 ( 0.17) |
0.90 ( 0.13) |
0.77 ( 0.27) |
U.K. |
Energy |
0.65 ( 0.47) |
0.89 ( 0.16) |
0.90 ( 0.11) |
U.K. |
Materials |
0.38 ( 0.57) |
0.41 ( 0.46) |
0.98 ( 0.03) |
U.K. |
Industrials |
0.91 ( 0.13) |
0.94 ( 0.07) |
0.92 ( 0.14) |
U.K. |
Discretionary |
0.92 ( 0.09) |
0.81 ( 0.17) |
0.92 ( 0.09) |
U.K. |
Staples |
0.52 ( 0.43) |
0.50 ( 0.28) |
0.88 ( 0.12) |
U.K. |
Healthcare |
0.80 ( 0.24) |
0.92 ( 0.12) |
0.93 ( 0.04) |
U.K. |
Financials |
0.91 ( 0.15) |
0.94 ( 0.06) |
0.94 ( 0.05) |
U.K. |
InfoTech |
0.53 ( 0.59) |
0.59 ( 0.63) |
0.85 ( 0.27) |
U.K. |
Telecom |
0.84 ( 0.21) |
0.86 ( 0.16) |
0.85 ( 0.15) |
U.K. |
Utilities |
0.38 ( 0.43) |
0.53 ( 0.27) |
0.90 ( 0.15) |
Japan |
Energy |
-0.13 ( 0.99) |
0.14 ( 0.92) |
-0.42 ( 0.67) |
Japan |
Materials |
-0.34 ( 0.91) |
0.25 ( 0.95) |
0.58 ( 0.65) |
Japan |
Industrials |
0.30 ( 0.79) |
0.93 ( 0.11) |
0.53 ( 0.59) |
Japan |
Discretionary |
0.49 ( 0.95) |
0.88 ( 0.18) |
0.60 ( 1.02) |
Japan |
Staples |
0.37 ( 0.91) |
0.42 ( 1.11) |
0.46 ( 1.06) |
Japan |
Healthcare |
0.20 ( 0.84) |
0.65 ( 0.81) |
0.02 ( 0.96) |
Japan |
Financials |
0.32 ( 0.76) |
0.91 ( 0.16) |
0.41 ( 0.80) |
Japan |
InfoTech |
0.22 ( 0.65) |
0.90 ( 0.29) |
0.71 ( 0.31) |
Japan |
Utilities |
-0.03 ( 0.80) |
0.10 ( 1.04) |
0.34 ( 0.65) |
Canada |
Energy |
-0.18 ( 0.83) |
-0.38 ( 0.60) |
0.32 ( 0.77) |
Canada |
Materials |
0.17 ( 0.46) |
-0.13 ( 0.45) |
0.92 ( 0.14) |
Canada |
Industrials |
0.47 ( 0.52) |
0.83 ( 0.31) |
0.46 ( 0.50) |
Canada |
Discretionary |
0.64 ( 0.40) |
0.89 ( 0.13) |
0.63 ( 0.40) |
Canada |
Staples |
-0.08 ( 0.67) |
0.69 ( 0.40) |
0.54 ( 0.48) |
Canada |
Healthcare |
0.12 ( 0.64) |
0.79 ( 0.27) |
0.37 ( 0.34) |
Canada |
Financials |
0.62 ( 0.29) |
0.81 ( 0.16) |
0.93 ( 0.08) |
Canada |
InfoTech |
0.66 ( 0.32) |
0.96 ( 0.07) |
0.82 ( 0.15) |
Canada |
Utilities |
0.32 ( 0.49) |
0.03 ( 0.55) |
0.33 ( 0.63) |
U.S. |
Energy |
0.17 ( 0.69) |
0.46 ( 0.50) |
0.93 ( 0.10) |
U.S. |
Materials |
0.26 ( 0.51) |
0.48 ( 0.33) |
0.87 ( 0.10) |
U.S. |
Industrials |
0.81 ( 0.22) |
0.91 ( 0.12) |
0.91 ( 0.09) |
U.S. |
Discretionary |
0.67 ( 0.26) |
0.70 ( 0.20) |
0.96 ( 0.04) |
U.S. |
Staples |
0.60 ( 0.36) |
0.64 ( 0.30) |
0.99 ( 0.03) |
U.S. |
Healthcare |
0.74 ( 0.32) |
0.82 ( 0.19) |
0.99 ( 0.01) |
U.S. |
Financials |
0.81 ( 0.17) |
0.92 ( 0.10) |
0.96 ( 0.05) |
U.S. |
InfoTech |
0.83 ( 0.19) |
0.91 ( 0.14) |
0.95 ( 0.07) |
U.S. |
Telecom |
0.80 ( 0.25) |
0.92 ( 0.15) |
0.81 ( 0.31) |
U.S. |
Utilities |
0.16 ( 0.57) |
0.30 ( 0.47) |
0.84 ( 0.21) |
Table A4 (2 pages): Variance Decompositions of
Country-Sector Returns
Each decomposition based on separately estimated VAR
system (standard errors in parentheses)
country |
sector |
cash flow news |
covariance term |
discount rate
news |
Germany |
Materials |
0.83 ( 0.23) |
-0.22 ( 0.37) |
0.38 ( 0.29) |
Germany |
Industrials |
0.78 ( 0.26) |
0.08 ( 0.23) |
0.14 ( 0.15) |
Germany |
Discretionary |
0.89 ( 0.21) |
-0.20 ( 0.37) |
0.30 ( 0.25) |
Germany |
Staples |
0.69 ( 0.14) |
0.17 ( 0.15) |
0.14 ( 0.09) |
Germany |
Healthcare |
0.78 ( 0.30) |
0.05 ( 0.39) |
0.17 ( 0.15) |
Germany |
Financials |
1.02 ( 0.42) |
-0.39 ( 0.51) |
0.37 ( 0.24) |
Germany |
InfoTech |
1.02 ( 0.38) |
-0.47 ( 0.62) |
0.46 ( 0.32) |
Germany |
Telecom |
1.36 ( 0.46) |
-0.90 ( 0.76) |
0.54 ( 0.42) |
Germany |
Utilities |
0.86 ( 0.30) |
-0.34 ( 0.58) |
0.48 ( 0.33) |
France |
Energy |
0.79 ( 0.34) |
0.11 ( 0.39) |
0.10 ( 0.09) |
France |
Materials |
0.83 ( 0.28) |
0.08 ( 0.26) |
0.09 ( 0.14) |
France |
Industrials |
0.82 ( 0.23) |
0.08 ( 0.21) |
0.10 ( 0.09) |
France |
Discretionary |
0.55 ( 0.21) |
0.26 ( 0.13) |
0.19 ( 0.14) |
France |
Staples |
0.87 ( 0.37) |
-0.19 ( 0.54) |
0.33 ( 0.22) |
France |
Healthcare |
0.95 ( 0.38) |
-0.16 ( 0.52) |
0.21 ( 0.19) |
France |
Financials |
0.73 ( 0.26) |
0.15 ( 0.24) |
0.12 ( 0.11) |
France |
InfoTech |
1.36 ( 0.73) |
-0.64 ( 1.02) |
0.28 ( 0.32) |
France |
Utilities |
0.87 ( 0.42) |
-0.12 ( 0.60) |
0.25 ( 0.23) |
Italy |
Energy |
0.66 ( 0.20) |
-0.03 ( 0.43) |
0.37 ( 0.28) |
Italy |
Materials |
0.93 ( 0.31) |
0.02 ( 0.31) |
0.04 ( 0.06) |
Italy |
Industrials |
1.01 ( 0.35) |
-0.75 ( 0.73) |
0.74 ( 0.45) |
Italy |
Discretionary |
0.79 ( 0.36) |
0.10 ( 0.36) |
0.11 ( 0.08) |
Italy |
Staples |
0.64 ( 0.17) |
0.12 ( 0.18) |
0.24 ( 0.20) |
Italy |
Financials |
1.01 ( 0.43) |
-0.31 ( 0.50) |
0.30 ( 0.23) |
Italy |
Telecom |
0.71 ( 0.32) |
-0.12 ( 0.36) |
0.41 ( 0.24) |
Italy |
Utilities |
0.87 ( 0.22) |
-0.22 ( 0.44) |
0.35 ( 0.30) |
Netherlands |
Energy |
1.03 ( 0.47) |
-0.21 ( 0.53) |
0.17 ( 0.12) |
Netherlands |
Materials |
1.20 ( 0.60) |
-0.36 ( 0.84) |
0.15 ( 0.26) |
Netherlands |
Industrials |
1.44 ( 0.58) |
-0.75 ( 0.92) |
0.30 ( 0.37) |
Netherlands |
Discretionary |
0.80 ( 0.23) |
-0.22 ( 0.34) |
0.42 ( 0.23) |
Netherlands |
Staples |
0.58 ( 0.21) |
0.19 ( 0.20) |
0.23 ( 0.17) |
Netherlands |
Financials |
0.84 ( 0.32) |
-0.24 ( 0.47) |
0.40 ( 0.25) |
Netherlands |
InfoTech |
0.84 ( 0.35) |
-0.10 ( 0.40) |
0.26 ( 0.16) |
U.K. |
Energy |
0.96 ( 0.44) |
-0.10 ( 0.48) |
0.14 ( 0.11) |
U.K. |
Materials |
0.89 ( 0.41) |
-0.05 ( 0.45) |
0.16 ( 0.20) |
U.K. |
Industrials |
1.10 ( 0.26) |
-0.27 ( 0.34) |
0.17 ( 0.20) |
U.K. |
Discretionary |
0.90 ( 0.24) |
-0.27 ( 0.37) |
0.37 ( 0.30) |
U.K. |
Staples |
0.50 ( 0.13) |
0.17 ( 0.17) |
0.33 ( 0.18) |
U.K. |
Healthcare |
0.43 ( 0.13) |
0.19 ( 0.14) |
0.38 ( 0.11) |
U.K. |
Financials |
0.57 ( 0.16) |
-0.21 ( 0.38) |
0.64 ( 0.30) |
U.K. |
InfoTech |
1.27 ( 0.54) |
-0.49 ( 0.69) |
0.22 ( 0.18) |
U.K. |
Telecom |
0.88 ( 0.21) |
-0.17 ( 0.25) |
0.29 ( 0.16) |
U.K. |
Utilities |
0.77 ( 0.21) |
-0.17 ( 0.45) |
0.39 ( 0.29) |
Japan |
Energy |
1.29 ( 0.58) |
-0.45 ( 0.82) |
0.16 ( 0.26) |
Japan |
Materials |
0.98 ( 0.40) |
-0.03 ( 0.45) |
0.05 ( 0.08) |
Japan |
Industrials |
1.13 ( 0.46) |
-0.29 ( 0.61) |
0.15 ( 0.19) |
Japan |
Discretionary |
1.17 ( 0.52) |
-0.25 ( 0.60) |
0.07 ( 0.10) |
Japan |
Staples |
1.11 ( 0.34) |
-0.15 ( 0.34) |
0.04 ( 0.08) |
Japan |
Healthcare |
1.18 ( 0.59) |
-0.29 ( 0.78) |
0.11 ( 0.22) |
Japan |
Financials |
1.32 ( 0.56) |
-0.42 ( 0.65) |
0.11 ( 0.12) |
Japan |
InfoTech |
1.49 ( 0.78) |
-0.69 ( 1.01) |
0.20 ( 0.25) |
Japan |
Utilities |
1.09 ( 0.30) |
-0.30 ( 0.50) |
0.22 ( 0.24) |
Canada |
Energy |
0.66 ( 0.14) |
0.23 ( 0.17) |
0.11 ( 0.16) |
Canada |
Materials |
0.50 ( 0.09) |
0.18 ( 0.19) |
0.32 ( 0.18) |
Canada |
Industrials |
1.62 ( 0.91) |
-0.84 ( 1.18) |
0.21 ( 0.29) |
Canada |
Discretionary |
0.87 ( 0.26) |
0.01 ( 0.29) |
0.13 ( 0.10) |
Canada |
Staples |
1.19 ( 0.37) |
-0.50 ( 0.55) |
0.31 ( 0.28) |
Canada |
Healthcare |
1.11 ( 0.50) |
-0.78 ( 0.90) |
0.67 ( 0.46) |
Canada |
Financials |
1.00 ( 0.31) |
-0.58 ( 0.61) |
0.58 ( 0.39) |
Canada |
InfoTech |
1.10 ( 0.60) |
-0.32 ( 0.72) |
0.22 ( 0.17) |
Canada |
Utilities |
1.26 ( 0.50) |
-0.46 ( 0.73) |
0.20 ( 0.29) |
U.S. |
Energy |
0.79 ( 0.38) |
0.08 ( 0.39) |
0.13 ( 0.06) |
U.S. |
Materials |
0.60 ( 0.23) |
0.11 ( 0.31) |
0.29 ( 0.23) |
U.S. |
Industrials |
0.56 ( 0.23) |
0.26 ( 0.16) |
0.18 ( 0.12) |
U.S. |
Discretionary |
0.71 ( 0.26) |
0.06 ( 0.28) |
0.22 ( 0.17) |
U.S. |
Staples |
0.38 ( 0.19) |
0.30 ( 0.08) |
0.32 ( 0.19) |
U.S. |
Healthcare |
0.44 ( 0.17) |
0.35 ( 0.10) |
0.21 ( 0.10) |
U.S. |
Financials |
0.39 ( 0.13) |
0.34 ( 0.09) |
0.26 ( 0.13) |
U.S. |
InfoTech |
0.82 ( 0.36) |
0.00 ( 0.36) |
0.18 ( 0.09) |
U.S. |
Telecom |
1.08 ( 0.36) |
-0.22 ( 0.38) |
0.13 ( 0.09) |
U.S. |
Utilities |
1.07 ( 0.63) |
-0.25 ( 0.80) |
0.18 ( 0.22) |
average for 71
country-sectors: |
|
0.91 |
-0.17 |
0.26 |
Note: Figures expressed as fractional contribution to stock return
variance
Table A5 (2 pages): Orthogonalized Decomposition of
Cash-Flow-Revision Component (G) of Returns
Cholesky Ordering: Global, National, Sectoral,
Idiosyncratic (standard errors in parentheses)
country |
sector |
global |
national |
sectoral |
idiosyncratic |
Germany |
Materials |
0.29 ( 0.16) |
0.18 ( 0.14) |
0.12 ( 0.09) |
0.40 ( 0.13) |
Germany |
Industrials |
0.22 ( 0.18) |
0.32 ( 0.16) |
0.04 ( 0.06) |
0.42 ( 0.16) |
Germany |
Discretionary |
0.11 ( 0.11) |
0.12 ( 0.14) |
0.01 ( 0.04) |
0.76 ( 0.22) |
Germany |
Staples |
0.01 ( 0.04) |
0.09 ( 0.11) |
0.03 ( 0.07) |
0.87 ( 0.15) |
Germany |
Healthcare |
0.16 ( 0.19) |
0.01 ( 0.04) |
0.25 ( 0.12) |
0.58 ( 0.22) |
Germany |
Financials |
0.36 ( 0.18) |
0.43 ( 0.15) |
0.04 ( 0.03) |
0.17 ( 0.08) |
Germany |
InfoTech |
0.05 ( 0.10) |
0.34 ( 0.16) |
0.07 ( 0.08) |
0.54 ( 0.19) |
Germany |
Telecom |
0.18 ( 0.16) |
0.21 ( 0.15) |
0.38 ( 0.16) |
0.23 ( 0.09) |
Germany |
Utilities |
0.10 ( 0.15) |
0.02 ( 0.05) |
0.05 ( 0.09) |
0.83 ( 0.17) |
France |
Energy |
0.19 ( 0.23) |
0.19 ( 0.14) |
0.40 ( 0.16) |
0.22 ( 0.09) |
France |
Materials |
0.16 ( 0.16) |
0.16 ( 0.14) |
0.30 ( 0.16) |
0.38 ( 0.16) |
France |
Industrials |
0.14 ( 0.15) |
0.39 ( 0.13) |
0.00 ( 0.01) |
0.47 ( 0.15) |
France |
Discretionary |
0.40 ( 0.18) |
0.27 ( 0.12) |
0.01 ( 0.02) |
0.32 ( 0.12) |
France |
Staples |
0.15 ( 0.15) |
0.08 ( 0.14) |
0.24 ( 0.25) |
0.53 ( 0.20) |
France |
Healthcare |
0.12 ( 0.17) |
0.03 ( 0.08) |
0.19 ( 0.12) |
0.66 ( 0.19) |
France |
Financials |
0.24 ( 0.17) |
0.27 ( 0.15) |
0.20 ( 0.12) |
0.29 ( 0.11) |
France |
InfoTech |
0.36 ( 0.23) |
0.31 ( 0.13) |
0.07 ( 0.06) |
0.25 ( 0.13) |
France |
Utilities |
0.15 ( 0.18) |
0.33 ( 0.14) |
0.02 ( 0.04) |
0.50 ( 0.18) |
Italy |
Energy |
0.02 ( 0.07) |
0.11 ( 0.13) |
0.08 ( 0.11) |
0.80 ( 0.19) |
Italy |
Materials |
0.02 ( 0.08) |
0.44 ( 0.16) |
0.15 ( 0.10) |
0.40 ( 0.14) |
Italy |
Industrials |
0.01 ( 0.05) |
0.50 ( 0.19) |
0.01 ( 0.03) |
0.49 ( 0.18) |
Italy |
Discretionary |
0.30 ( 0.21) |
0.40 ( 0.18) |
0.04 ( 0.04) |
0.26 ( 0.14) |
Italy |
Staples |
0.00 ( 0.03) |
0.18 ( 0.15) |
0.01 ( 0.05) |
0.81 ( 0.17) |
Italy |
Financials |
0.15 ( 0.20) |
0.48 ( 0.21) |
0.12 ( 0.12) |
0.25 ( 0.12) |
Italy |
Telecom |
0.04 ( 0.10) |
0.44 ( 0.13) |
0.16 ( 0.11) |
0.36 ( 0.11) |
Italy |
Utilities |
0.01 ( 0.04) |
0.17 ( 0.18) |
0.03 ( 0.07) |
0.79 ( 0.18) |
Netherlands |
Energy |
0.33 ( 0.28) |
0.09 ( 0.11) |
0.43 ( 0.18) |
0.15 ( 0.07) |
Netherlands |
Materials |
0.36 ( 0.21) |
0.16 ( 0.09) |
0.00 ( 0.01) |
0.49 ( 0.18) |
Netherlands |
Industrials |
0.45 ( 0.22) |
0.16 ( 0.11) |
0.05 ( 0.06) |
0.35 ( 0.16) |
Netherlands |
Discretionary |
0.06 ( 0.13) |
0.02 ( 0.05) |
0.01 ( 0.03) |
0.91 ( 0.16) |
Netherlands |
Staples |
0.15 ( 0.20) |
0.13 ( 0.15) |
0.37 ( 0.25) |
0.35 ( 0.14) |
Netherlands |
Financials |
0.41 ( 0.19) |
0.29 ( 0.10) |
0.09 ( 0.06) |
0.21 ( 0.10) |
Netherlands |
InfoTech |
0.30 ( 0.21) |
0.14 ( 0.10) |
0.05 ( 0.06) |
0.51 ( 0.19) |
U.K. |
Energy |
0.22 ( 0.25) |
0.06 ( 0.10) |
0.50 ( 0.18) |
0.22 ( 0.10) |
U.K. |
Materials |
0.36 ( 0.18) |
0.03 ( 0.06) |
0.31 ( 0.10) |
0.30 ( 0.12) |
U.K. |
Industrials |
0.42 ( 0.17) |
0.17 ( 0.13) |
0.06 ( 0.07) |
0.34 ( 0.10) |
U.K. |
Discretionary |
0.27 ( 0.18) |
0.02 ( 0.05) |
0.17 ( 0.12) |
0.54 ( 0.16) |
U.K. |
Staples |
0.00 ( 0.02) |
0.27 ( 0.12) |
0.18 ( 0.11) |
0.55 ( 0.17) |
U.K. |
Healthcare |
0.10 ( 0.15) |
0.07 ( 0.07) |
0.28 ( 0.15) |
0.55 ( 0.17) |
U.K. |
Financials |
0.12 ( 0.20) |
0.48 ( 0.18) |
0.13 ( 0.11) |
0.27 ( 0.11) |
U.K. |
InfoTech |
0.39 ( 0.17) |
0.00 ( 0.03) |
0.15 ( 0.09) |
0.45 ( 0.17) |
U.K. |
Telecom |
0.08 ( 0.10) |
0.07 ( 0.08) |
0.51 ( 0.11) |
0.34 ( 0.10) |
U.K. |
Utilities |
0.06 ( 0.11) |
0.16 ( 0.13) |
0.05 ( 0.07) |
0.73 ( 0.12) |
Japan |
Energy |
0.00 ( 0.02) |
0.62 ( 0.15) |
0.01 ( 0.02) |
0.37 ( 0.16) |
Japan |
Materials |
0.08 ( 0.15) |
0.69 ( 0.18) |
0.03 ( 0.03) |
0.20 ( 0.08) |
Japan |
Industrials |
0.07 ( 0.15) |
0.83 ( 0.17) |
0.02 ( 0.02) |
0.09 ( 0.04) |
Japan |
Discretionary |
0.41 ( 0.20) |
0.41 ( 0.17) |
0.04 ( 0.05) |
0.14 ( 0.07) |
Japan |
Staples |
0.13 ( 0.16) |
0.49 ( 0.15) |
0.07 ( 0.06) |
0.31 ( 0.13) |
Japan |
Healthcare |
0.31 ( 0.26) |
0.38 ( 0.22) |
0.02 ( 0.03) |
0.28 ( 0.13) |
Japan |
Financials |
0.15 ( 0.20) |
0.71 ( 0.19) |
0.03 ( 0.03) |
0.11 ( 0.05) |
Japan |
InfoTech |
0.43 ( 0.22) |
0.28 ( 0.16) |
0.15 ( 0.10) |
0.14 ( 0.08) |
Japan |
Utilities |
0.02 ( 0.08) |
0.18 ( 0.16) |
0.20 ( 0.18) |
0.60 ( 0.14) |
Canada |
Energy |
0.00 ( 0.03) |
0.26 ( 0.17) |
0.37 ( 0.16) |
0.37 ( 0.11) |
Canada |
Materials |
0.05 ( 0.11) |
0.05 ( 0.09) |
0.35 ( 0.15) |
0.54 ( 0.16) |
Canada |
Industrials |
0.42 ( 0.22) |
0.14 ( 0.11) |
0.15 ( 0.08) |
0.29 ( 0.15) |
Canada |
Discretionary |
0.42 ( 0.18) |
0.13 ( 0.12) |
0.06 ( 0.05) |
0.40 ( 0.14) |
Canada |
Staples |
0.12 ( 0.14) |
0.06 ( 0.10) |
0.06 ( 0.08) |
0.76 ( 0.16) |
Canada |
Healthcare |
0.02 ( 0.09) |
0.47 ( 0.20) |
0.00 ( 0.01) |
0.51 ( 0.19) |
Canada |
Financials |
0.09 ( 0.14) |
0.19 ( 0.15) |
0.25 ( 0.13) |
0.47 ( 0.16) |
Canada |
InfoTech |
0.43 ( 0.21) |
0.22 ( 0.11) |
0.12 ( 0.09) |
0.23 ( 0.12) |
Canada |
Utilities |
0.03 ( 0.07) |
0.03 ( 0.08) |
0.12 ( 0.09) |
0.83 ( 0.15) |
U.S. |
Energy |
0.32 ( 0.27) |
0.06 ( 0.06) |
0.51 ( 0.21) |
0.11 ( 0.06) |
U.S. |
Materials |
0.26 ( 0.21) |
0.00 ( 0.02) |
0.53 ( 0.17) |
0.21 ( 0.09) |
U.S. |
Industrials |
0.50 ( 0.17) |
0.12 ( 0.07) |
0.25 ( 0.11) |
0.14 ( 0.07) |
U.S. |
Discretionary |
0.60 ( 0.14) |
0.13 ( 0.08) |
0.13 ( 0.09) |
0.13 ( 0.06) |
U.S. |
Staples |
0.04 ( 0.11) |
0.08 ( 0.09) |
0.67 ( 0.20) |
0.22 ( 0.14) |
U.S. |
Healthcare |
0.13 ( 0.20) |
0.23 ( 0.13) |
0.54 ( 0.19) |
0.09 ( 0.04) |
U.S. |
Financials |
0.18 ( 0.18) |
0.24 ( 0.10) |
0.36 ( 0.15) |
0.22 ( 0.08) |
U.S. |
InfoTech |
0.52 ( 0.18) |
0.08 ( 0.08) |
0.36 ( 0.17) |
0.05 ( 0.02) |
U.S. |
Telecom |
0.13 ( 0.17) |
0.11 ( 0.11) |
0.29 ( 0.17) |
0.47 ( 0.19) |
U.S. |
Utilities |
0.23 ( 0.25) |
0.05 ( 0.05) |
0.47 ( 0.18) |
0.25 ( 0.15) |
Note: Figures expressed as fractional contribution to stock return
variance
Table A6 (2 pages): Orthogonalized Decomposition of
Cash-Flow-Revision Component (G) of Returns
Cholesky Ordering: Global, Sectoral, National,
Idiosyncratic (standard errors in parentheses)
country |
sector |
global |
national |
sectoral |
idiosyncratic |
Germany |
Materials |
0.29 ( 0.16) |
0.13 ( 0.11) |
0.17 ( 0.12) |
0.40 ( 0.13) |
Germany |
Industrials |
0.22 ( 0.18) |
0.32 ( 0.15) |
0.04 ( 0.09) |
0.42 ( 0.16) |
Germany |
Discretionary |
0.11 ( 0.11) |
0.08 ( 0.11) |
0.05 ( 0.10) |
0.76 ( 0.22) |
Germany |
Staples |
0.01 ( 0.04) |
0.07 ( 0.10) |
0.05 ( 0.08) |
0.87 ( 0.15) |
Germany |
Healthcare |
0.16 ( 0.19) |
0.02 ( 0.05) |
0.24 ( 0.12) |
0.58 ( 0.22) |
Germany |
Financials |
0.36 ( 0.18) |
0.43 ( 0.15) |
0.04 ( 0.07) |
0.17 ( 0.08) |
Germany |
InfoTech |
0.05 ( 0.10) |
0.23 ( 0.11) |
0.18 ( 0.15) |
0.54 ( 0.19) |
Germany |
Telecom |
0.18 ( 0.16) |
0.07 ( 0.06) |
0.52 ( 0.15) |
0.23 ( 0.09) |
Germany |
Utilities |
0.10 ( 0.15) |
0.01 ( 0.04) |
0.06 ( 0.09) |
0.83 ( 0.17) |
France |
Energy |
0.19 ( 0.23) |
0.12 ( 0.08) |
0.47 ( 0.15) |
0.22 ( 0.09) |
France |
Materials |
0.16 ( 0.16) |
0.09 ( 0.09) |
0.36 ( 0.16) |
0.38 ( 0.16) |
France |
Industrials |
0.14 ( 0.15) |
0.39 ( 0.13) |
0.00 ( 0.00) |
0.47 ( 0.15) |
France |
Discretionary |
0.40 ( 0.18) |
0.21 ( 0.10) |
0.08 ( 0.07) |
0.32 ( 0.12) |
France |
Staples |
0.15 ( 0.15) |
0.10 ( 0.11) |
0.22 ( 0.21) |
0.53 ( 0.20) |
France |
Healthcare |
0.12 ( 0.17) |
0.03 ( 0.06) |
0.20 ( 0.13) |
0.66 ( 0.19) |
France |
Financials |
0.24 ( 0.17) |
0.22 ( 0.11) |
0.25 ( 0.12) |
0.29 ( 0.11) |
France |
InfoTech |
0.36 ( 0.23) |
0.18 ( 0.09) |
0.21 ( 0.12) |
0.25 ( 0.13) |
France |
Utilities |
0.15 ( 0.18) |
0.29 ( 0.15) |
0.05 ( 0.09) |
0.50 ( 0.18) |
Italy |
Energy |
0.02 ( 0.07) |
0.11 ( 0.13) |
0.07 ( 0.10) |
0.80 ( 0.19) |
Italy |
Materials |
0.02 ( 0.08) |
0.42 ( 0.17) |
0.17 ( 0.17) |
0.40 ( 0.14) |
Italy |
Industrials |
0.01 ( 0.05) |
0.49 ( 0.19) |
0.01 ( 0.05) |
0.49 ( 0.18) |
Italy |
Discretionary |
0.30 ( 0.21) |
0.28 ( 0.13) |
0.17 ( 0.13) |
0.26 ( 0.14) |
Italy |
Staples |
0.00 ( 0.03) |
0.18 ( 0.15) |
0.01 ( 0.04) |
0.81 ( 0.17) |
Italy |
Financials |
0.15 ( 0.20) |
0.42 ( 0.16) |
0.18 ( 0.16) |
0.25 ( 0.12) |
Italy |
Telecom |
0.04 ( 0.10) |
0.26 ( 0.13) |
0.34 ( 0.17) |
0.36 ( 0.11) |
Italy |
Utilities |
0.01 ( 0.04) |
0.12 ( 0.15) |
0.08 ( 0.10) |
0.79 ( 0.18) |
Netherlands |
Energy |
0.33 ( 0.28) |
0.01 ( 0.01) |
0.52 ( 0.22) |
0.15 ( 0.07) |
Netherlands |
Materials |
0.36 ( 0.21) |
0.14 ( 0.09) |
0.02 ( 0.04) |
0.49 ( 0.18) |
Netherlands |
Industrials |
0.45 ( 0.22) |
0.09 ( 0.07) |
0.11 ( 0.11) |
0.35 ( 0.16) |
Netherlands |
Discretionary |
0.06 ( 0.13) |
0.02 ( 0.05) |
0.00 ( 0.02) |
0.91 ( 0.16) |
Netherlands |
Staples |
0.15 ( 0.20) |
0.05 ( 0.05) |
0.45 ( 0.19) |
0.35 ( 0.14) |
Netherlands |
Financials |
0.41 ( 0.19) |
0.18 ( 0.10) |
0.20 ( 0.11) |
0.21 ( 0.10) |
Netherlands |
InfoTech |
0.30 ( 0.21) |
0.15 ( 0.10) |
0.04 ( 0.05) |
0.51 ( 0.19) |
U.K. |
Energy |
0.22 ( 0.25) |
0.04 ( 0.05) |
0.52 ( 0.18) |
0.22 ( 0.10) |
U.K. |
Materials |
0.36 ( 0.18) |
0.01 ( 0.02) |
0.34 ( 0.11) |
0.30 ( 0.12) |
U.K. |
Industrials |
0.42 ( 0.17) |
0.18 ( 0.12) |
0.05 ( 0.07) |
0.34 ( 0.10) |
U.K. |
Discretionary |
0.27 ( 0.18) |
0.01 ( 0.04) |
0.17 ( 0.12) |
0.54 ( 0.16) |
U.K. |
Staples |
0.00 ( 0.02) |
0.14 ( 0.10) |
0.31 ( 0.13) |
0.55 ( 0.17) |
U.K. |
Healthcare |
0.10 ( 0.15) |
0.04 ( 0.04) |
0.31 ( 0.16) |
0.55 ( 0.17) |
U.K. |
Financials |
0.12 ( 0.20) |
0.26 ( 0.12) |
0.35 ( 0.18) |
0.27 ( 0.11) |
U.K. |
InfoTech |
0.39 ( 0.17) |
0.01 ( 0.03) |
0.14 ( 0.11) |
0.45 ( 0.17) |
U.K. |
Telecom |
0.08 ( 0.10) |
0.07 ( 0.08) |
0.51 ( 0.13) |
0.34 ( 0.10) |
U.K. |
Utilities |
0.06 ( 0.11) |
0.16 ( 0.14) |
0.05 ( 0.08) |
0.73 ( 0.12) |
Japan |
Energy |
0.00 ( 0.02) |
0.49 ( 0.19) |
0.14 ( 0.18) |
0.37 ( 0.16) |
Japan |
Materials |
0.08 ( 0.15) |
0.36 ( 0.15) |
0.36 ( 0.22) |
0.20 ( 0.08) |
Japan |
Industrials |
0.07 ( 0.15) |
0.52 ( 0.17) |
0.32 ( 0.21) |
0.09 ( 0.04) |
Japan |
Discretionary |
0.41 ( 0.20) |
0.42 ( 0.17) |
0.03 ( 0.06) |
0.14 ( 0.07) |
Japan |
Staples |
0.13 ( 0.16) |
0.48 ( 0.16) |
0.08 ( 0.08) |
0.31 ( 0.13) |
Japan |
Healthcare |
0.31 ( 0.26) |
0.40 ( 0.22) |
0.01 ( 0.03) |
0.28 ( 0.13) |
Japan |
Financials |
0.15 ( 0.20) |
0.62 ( 0.19) |
0.12 ( 0.13) |
0.11 ( 0.05) |
Japan |
InfoTech |
0.43 ( 0.22) |
0.23 ( 0.13) |
0.20 ( 0.14) |
0.14 ( 0.08) |
Japan |
Utilities |
0.02 ( 0.08) |
0.21 ( 0.14) |
0.18 ( 0.19) |
0.60 ( 0.14) |
Canada |
Energy |
0.00 ( 0.03) |
0.06 ( 0.06) |
0.57 ( 0.11) |
0.37 ( 0.11) |
Canada |
Materials |
0.05 ( 0.11) |
0.01 ( 0.04) |
0.39 ( 0.15) |
0.54 ( 0.16) |
Canada |
Industrials |
0.42 ( 0.22) |
0.05 ( 0.04) |
0.24 ( 0.11) |
0.29 ( 0.15) |
Canada |
Discretionary |
0.42 ( 0.18) |
0.13 ( 0.11) |
0.05 ( 0.04) |
0.40 ( 0.14) |
Canada |
Staples |
0.12 ( 0.14) |
0.11 ( 0.11) |
0.01 ( 0.06) |
0.76 ( 0.16) |
Canada |
Healthcare |
0.02 ( 0.09) |
0.39 ( 0.18) |
0.07 ( 0.14) |
0.51 ( 0.19) |
Canada |
Financials |
0.09 ( 0.14) |
0.19 ( 0.15) |
0.25 ( 0.14) |
0.47 ( 0.16) |
Canada |
InfoTech |
0.43 ( 0.21) |
0.05 ( 0.04) |
0.29 ( 0.13) |
0.23 ( 0.12) |
Canada |
Utilities |
0.03 ( 0.07) |
0.03 ( 0.07) |
0.12 ( 0.09) |
0.83 ( 0.15) |
U.S. |
Energy |
0.32 ( 0.27) |
0.02 ( 0.02) |
0.55 ( 0.22) |
0.11 ( 0.06) |
U.S. |
Materials |
0.26 ( 0.21) |
0.04 ( 0.03) |
0.50 ( 0.17) |
0.21 ( 0.09) |
U.S. |
Industrials |
0.50 ( 0.17) |
0.09 ( 0.06) |
0.27 ( 0.12) |
0.14 ( 0.07) |
U.S. |
Discretionary |
0.60 ( 0.14) |
0.07 ( 0.04) |
0.20 ( 0.09) |
0.13 ( 0.06) |
U.S. |
Staples |
0.04 ( 0.11) |
0.01 ( 0.01) |
0.74 ( 0.22) |
0.22 ( 0.14) |
U.S. |
Healthcare |
0.13 ( 0.20) |
0.03 ( 0.02) |
0.75 ( 0.19) |
0.09 ( 0.04) |
U.S. |
Financials |
0.18 ( 0.18) |
0.20 ( 0.09) |
0.40 ( 0.14) |
0.22 ( 0.08) |
U.S. |
InfoTech |
0.52 ( 0.18) |
0.01 ( 0.01) |
0.43 ( 0.17) |
0.05 ( 0.02) |
U.S. |
Telecom |
0.13 ( 0.17) |
0.12 ( 0.10) |
0.27 ( 0.17) |
0.47 ( 0.19) |
U.S. |
Utilities |
0.23 ( 0.25) |
0.03 ( 0.04) |
0.48 ( 0.17) |
0.25 ( 0.15) |
Note: Figures expressed as fractional contribution to stock return
variance
Table A7 (2 pages): Orthogonalized Decomposition of
Discount-Rate Component (H) of Returns
Cholesky Ordering: Global, National, Sectoral,
Idiosyncratic (standard errors in parentheses)
country |
sector |
global |
national |
sectoral |
idiosyncratic |
Germany |
Materials |
0.80 ( 0.18) |
0.02 ( 0.07) |
0.07 ( 0.11) |
0.10 ( 0.10) |
Germany |
Industrials |
0.67 ( 0.46) |
0.08 ( 0.22) |
0.08 ( 0.22) |
0.17 ( 0.31) |
Germany |
Discretionary |
0.84 ( 0.14) |
0.02 ( 0.10) |
0.01 ( 0.03) |
0.13 ( 0.15) |
Germany |
Staples |
0.32 ( 0.45) |
0.01 ( 0.11) |
0.00 ( 0.06) |
0.66 ( 0.42) |
Germany |
Healthcare |
0.40 ( 0.47) |
0.28 ( 0.44) |
0.01 ( 0.06) |
0.31 ( 0.29) |
Germany |
Financials |
0.59 ( 0.46) |
0.33 ( 0.44) |
0.00 ( 0.02) |
0.08 ( 0.10) |
Germany |
InfoTech |
0.63 ( 0.51) |
0.29 ( 0.45) |
0.00 ( 0.01) |
0.08 ( 0.10) |
Germany |
Telecom |
0.85 ( 0.20) |
0.04 ( 0.15) |
0.05 ( 0.12) |
0.06 ( 0.08) |
Germany |
Utilities |
0.60 ( 0.34) |
0.21 ( 0.30) |
0.14 ( 0.23) |
0.04 ( 0.06) |
France |
Energy |
0.17 ( 0.51) |
0.34 ( 0.60) |
0.18 ( 0.54) |
0.30 ( 0.25) |
France |
Materials |
0.43 ( 0.63) |
0.14 ( 0.40) |
0.23 ( 0.34) |
0.20 ( 0.46) |
France |
Industrials |
0.72 ( 0.49) |
0.10 ( 0.38) |
0.06 ( 0.14) |
0.11 ( 0.17) |
France |
Discretionary |
0.80 ( 0.16) |
0.04 ( 0.12) |
0.09 ( 0.08) |
0.07 ( 0.08) |
France |
Staples |
0.81 ( 0.38) |
0.15 ( 0.35) |
0.00 ( 0.04) |
0.04 ( 0.06) |
France |
Healthcare |
0.36 ( 0.62) |
0.31 ( 0.53) |
0.09 ( 0.28) |
0.25 ( 0.29) |
France |
Financials |
0.60 ( 0.45) |
0.04 ( 0.21) |
0.30 ( 0.35) |
0.07 ( 0.10) |
France |
InfoTech |
0.24 ( 0.45) |
0.63 ( 0.50) |
0.06 ( 0.12) |
0.07 ( 0.13) |
France |
Utilities |
0.05 ( 0.22) |
0.69 ( 0.39) |
0.01 ( 0.11) |
0.24 ( 0.22) |
Italy |
Energy |
0.31 ( 0.46) |
0.02 ( 0.25) |
0.24 ( 0.51) |
0.42 ( 0.58) |
Italy |
Materials |
0.02 ( 0.38) |
0.23 ( 0.98) |
0.40 ( 1.31) |
0.35 ( 0.50) |
Italy |
Industrials |
0.38 ( 0.42) |
0.43 ( 0.53) |
0.07 ( 0.21) |
0.12 ( 0.41) |
Italy |
Discretionary |
0.38 ( 0.52) |
0.31 ( 0.53) |
0.07 ( 0.18) |
0.24 ( 0.42) |
Italy |
Staples |
0.73 ( 0.37) |
0.01 ( 0.11) |
0.16 ( 0.31) |
0.11 ( 0.19) |
Italy |
Financials |
0.61 ( 0.49) |
0.13 ( 0.54) |
0.09 ( 0.39) |
0.18 ( 0.23) |
Italy |
Telecom |
0.59 ( 0.39) |
0.33 ( 0.37) |
0.03 ( 0.06) |
0.06 ( 0.10) |
Italy |
Utilities |
0.51 ( 0.43) |
0.13 ( 0.42) |
0.00 ( 0.02) |
0.36 ( 0.46) |
Netherlands |
Energy |
0.28 ( 0.55) |
0.43 ( 0.44) |
0.18 ( 0.23) |
0.11 ( 0.09) |
Netherlands |
Materials |
0.03 ( 0.20) |
0.80 ( 0.29) |
0.03 ( 0.20) |
0.13 ( 0.26) |
Netherlands |
Industrials |
0.06 ( 0.22) |
0.60 ( 0.36) |
0.09 ( 0.19) |
0.26 ( 0.39) |
Netherlands |
Discretionary |
0.58 ( 0.36) |
0.06 ( 0.21) |
0.01 ( 0.06) |
0.35 ( 0.36) |
Netherlands |
Staples |
0.58 ( 0.49) |
0.24 ( 0.44) |
0.06 ( 0.18) |
0.12 ( 0.11) |
Netherlands |
Financials |
0.85 ( 0.21) |
0.11 ( 0.21) |
0.01 ( 0.03) |
0.03 ( 0.03) |
Netherlands |
InfoTech |
0.78 ( 0.30) |
0.10 ( 0.25) |
0.00 ( 0.01) |
0.12 ( 0.15) |
U.K. |
Energy |
0.42 ( 0.62) |
0.38 ( 0.62) |
0.10 ( 0.21) |
0.10 ( 0.11) |
U.K. |
Materials |
0.14 ( 0.43) |
0.03 ( 0.17) |
0.80 ( 0.39) |
0.03 ( 0.06) |
U.K. |
Industrials |
0.84 ( 0.24) |
0.06 ( 0.11) |
0.02 ( 0.10) |
0.09 ( 0.16) |
U.K. |
Discretionary |
0.85 ( 0.17) |
0.00 ( 0.02) |
0.08 ( 0.11) |
0.07 ( 0.09) |
U.K. |
Staples |
0.27 ( 0.44) |
0.00 ( 0.04) |
0.60 ( 0.53) |
0.13 ( 0.24) |
U.K. |
Healthcare |
0.64 ( 0.38) |
0.20 ( 0.22) |
0.07 ( 0.21) |
0.09 ( 0.06) |
U.K. |
Financials |
0.82 ( 0.28) |
0.07 ( 0.18) |
0.06 ( 0.07) |
0.05 ( 0.07) |
U.K. |
InfoTech |
0.28 ( 0.62) |
0.07 ( 0.35) |
0.49 ( 0.71) |
0.15 ( 0.22) |
U.K. |
Telecom |
0.71 ( 0.35) |
0.05 ( 0.11) |
0.01 ( 0.10) |
0.23 ( 0.24) |
U.K. |
Utilities |
0.15 ( 0.33) |
0.22 ( 0.61) |
0.56 ( 0.45) |
0.08 ( 0.11) |
Japan |
Energy |
0.02 ( 0.26) |
0.04 ( 0.30) |
0.17 ( 0.93) |
0.78 ( 0.79) |
Japan |
Materials |
0.12 ( 0.62) |
0.09 ( 0.47) |
0.28 ( 0.67) |
0.52 ( 0.84) |
Japan |
Industrials |
0.09 ( 0.47) |
0.77 ( 0.52) |
0.00 ( 0.01) |
0.14 ( 0.20) |
Japan |
Discretionary |
0.24 ( 0.92) |
0.56 ( 0.91) |
0.04 ( 0.16) |
0.16 ( 0.24) |
Japan |
Staples |
0.13 ( 0.67) |
0.10 ( 0.74) |
0.17 ( 0.59) |
0.60 ( 0.65) |
Japan |
Healthcare |
0.04 ( 0.33) |
0.38 ( 1.00) |
0.01 ( 0.13) |
0.56 ( 1.03) |
Japan |
Financials |
0.11 ( 0.49) |
0.72 ( 0.61) |
0.00 ( 0.03) |
0.17 ( 0.29) |
Japan |
InfoTech |
0.05 ( 0.28) |
0.79 ( 0.52) |
0.08 ( 0.34) |
0.08 ( 0.17) |
Japan |
Utilities |
0.00 ( 0.05) |
0.01 ( 0.23) |
0.33 ( 0.47) |
0.65 ( 0.47) |
Canada |
Energy |
0.03 ( 0.29) |
0.15 ( 0.34) |
0.16 ( 0.49) |
0.66 ( 0.48) |
Canada |
Materials |
0.03 ( 0.16) |
0.14 ( 0.28) |
0.73 ( 0.36) |
0.10 ( 0.21) |
Canada |
Industrials |
0.22 ( 0.48) |
0.49 ( 0.43) |
0.02 ( 0.10) |
0.28 ( 0.45) |
Canada |
Discretionary |
0.41 ( 0.51) |
0.38 ( 0.39) |
0.01 ( 0.03) |
0.20 ( 0.22) |
Canada |
Staples |
0.01 ( 0.10) |
0.68 ( 0.34) |
0.18 ( 0.33) |
0.13 ( 0.12) |
Canada |
Healthcare |
0.01 ( 0.15) |
0.66 ( 0.31) |
0.04 ( 0.15) |
0.28 ( 0.24) |
Canada |
Financials |
0.39 ( 0.36) |
0.26 ( 0.28) |
0.24 ( 0.23) |
0.11 ( 0.10) |
Canada |
InfoTech |
0.43 ( 0.43) |
0.50 ( 0.43) |
0.01 ( 0.05) |
0.05 ( 0.07) |
Canada |
Utilities |
0.10 ( 0.31) |
0.07 ( 0.28) |
0.08 ( 0.34) |
0.75 ( 0.56) |
U.S. |
Energy |
0.03 ( 0.23) |
0.56 ( 0.28) |
0.30 ( 0.39) |
0.11 ( 0.29) |
U.S. |
Materials |
0.07 ( 0.27) |
0.27 ( 0.41) |
0.46 ( 0.33) |
0.19 ( 0.14) |
U.S. |
Industrials |
0.66 ( 0.35) |
0.19 ( 0.31) |
0.03 ( 0.16) |
0.12 ( 0.13) |
U.S. |
Discretionary |
0.45 ( 0.34) |
0.05 ( 0.13) |
0.44 ( 0.27) |
0.06 ( 0.07) |
U.S. |
Staples |
0.36 ( 0.43) |
0.06 ( 0.16) |
0.56 ( 0.41) |
0.03 ( 0.05) |
U.S. |
Healthcare |
0.54 ( 0.47) |
0.13 ( 0.24) |
0.30 ( 0.33) |
0.03 ( 0.02) |
U.S. |
Financials |
0.66 ( 0.27) |
0.20 ( 0.22) |
0.08 ( 0.15) |
0.06 ( 0.08) |
U.S. |
InfoTech |
0.69 ( 0.32) |
0.14 ( 0.17) |
0.14 ( 0.24) |
0.03 ( 0.05) |
U.S. |
Telecom |
0.63 ( 0.40) |
0.21 ( 0.26) |
0.01 ( 0.12) |
0.15 ( 0.30) |
U.S. |
Utilities |
0.02 ( 0.18) |
0.10 ( 0.33) |
0.64 ( 0.41) |
0.23 ( 0.32) |
Note: Figures expressed as fractional contribution to stock
return variance
Table A8 (2 pages): Orthogonalized Decomposition of
Discount-Rate Component (H) of Returns
Cholesky Ordering: Global, Sectoral, National,
Idiosyncratic (standard errors in parentheses)
country |
sector |
global |
national |
sectoral |
idiosyncratic |
Germany |
Materials |
0.80 ( 0.18) |
0.03 ( 0.08) |
0.06 ( 0.11) |
0.10 ( 0.10) |
Germany |
Industrials |
0.67 ( 0.46) |
0.03 ( 0.21) |
0.13 ( 0.26) |
0.17 ( 0.31) |
Germany |
Discretionary |
0.84 ( 0.14) |
0.02 ( 0.10) |
0.00 ( 0.02) |
0.13 ( 0.15) |
Germany |
Staples |
0.32 ( 0.45) |
0.01 ( 0.11) |
0.00 ( 0.03) |
0.66 ( 0.42) |
Germany |
Healthcare |
0.40 ( 0.47) |
0.28 ( 0.45) |
0.01 ( 0.08) |
0.31 ( 0.29) |
Germany |
Financials |
0.59 ( 0.46) |
0.32 ( 0.44) |
0.01 ( 0.05) |
0.08 ( 0.10) |
Germany |
InfoTech |
0.63 ( 0.51) |
0.08 ( 0.18) |
0.21 ( 0.41) |
0.08 ( 0.10) |
Germany |
Telecom |
0.85 ( 0.20) |
0.00 ( 0.03) |
0.09 ( 0.18) |
0.06 ( 0.08) |
Germany |
Utilities |
0.60 ( 0.34) |
0.00 ( 0.03) |
0.35 ( 0.33) |
0.04 ( 0.06) |
France |
Energy |
0.17 ( 0.51) |
0.27 ( 0.46) |
0.26 ( 0.53) |
0.30 ( 0.25) |
France |
Materials |
0.43 ( 0.63) |
0.01 ( 0.06) |
0.36 ( 0.44) |
0.20 ( 0.46) |
France |
Industrials |
0.72 ( 0.49) |
0.10 ( 0.37) |
0.07 ( 0.19) |
0.11 ( 0.17) |
France |
Discretionary |
0.80 ( 0.16) |
0.08 ( 0.15) |
0.05 ( 0.08) |
0.07 ( 0.08) |
France |
Staples |
0.81 ( 0.38) |
0.13 ( 0.35) |
0.02 ( 0.12) |
0.04 ( 0.06) |
France |
Healthcare |
0.36 ( 0.62) |
0.35 ( 0.54) |
0.04 ( 0.21) |
0.25 ( 0.29) |
France |
Financials |
0.60 ( 0.45) |
0.01 ( 0.09) |
0.32 ( 0.40) |
0.07 ( 0.10) |
France |
InfoTech |
0.24 ( 0.45) |
0.12 ( 0.23) |
0.57 ( 0.57) |
0.07 ( 0.13) |
France |
Utilities |
0.05 ( 0.22) |
0.27 ( 0.55) |
0.44 ( 0.46) |
0.24 ( 0.22) |
Italy |
Energy |
0.31 ( 0.46) |
0.00 ( 0.09) |
0.26 ( 0.51) |
0.42 ( 0.58) |
Italy |
Materials |
0.02 ( 0.38) |
0.00 ( 0.02) |
0.63 ( 0.71) |
0.35 ( 0.50) |
Italy |
Industrials |
0.38 ( 0.42) |
0.43 ( 0.74) |
0.07 ( 0.22) |
0.12 ( 0.41) |
Italy |
Discretionary |
0.38 ( 0.52) |
0.35 ( 0.53) |
0.03 ( 0.15) |
0.24 ( 0.42) |
Italy |
Staples |
0.73 ( 0.37) |
0.05 ( 0.17) |
0.11 ( 0.35) |
0.11 ( 0.19) |
Italy |
Financials |
0.61 ( 0.49) |
0.00 ( 0.06) |
0.21 ( 0.32) |
0.18 ( 0.23) |
Italy |
Telecom |
0.59 ( 0.39) |
0.21 ( 0.29) |
0.15 ( 0.38) |
0.06 ( 0.10) |
Italy |
Utilities |
0.51 ( 0.43) |
0.10 ( 0.40) |
0.04 ( 0.19) |
0.36 ( 0.46) |
Netherlands |
Energy |
0.28 ( 0.55) |
0.02 ( 0.06) |
0.59 ( 0.53) |
0.11 ( 0.09) |
Netherlands |
Materials |
0.03 ( 0.20) |
0.53 ( 0.38) |
0.31 ( 0.55) |
0.13 ( 0.26) |
Netherlands |
Industrials |
0.06 ( 0.22) |
0.66 ( 0.42) |
0.02 ( 0.18) |
0.26 ( 0.39) |
Netherlands |
Discretionary |
0.58 ( 0.36) |
0.06 ( 0.19) |
0.02 ( 0.07) |
0.35 ( 0.36) |
Netherlands |
Staples |
0.58 ( 0.49) |
0.11 ( 0.23) |
0.18 ( 0.41) |
0.12 ( 0.11) |
Netherlands |
Financials |
0.85 ( 0.21) |
0.09 ( 0.20) |
0.03 ( 0.07) |
0.03 ( 0.03) |
Netherlands |
InfoTech |
0.78 ( 0.30) |
0.06 ( 0.18) |
0.04 ( 0.16) |
0.12 ( 0.15) |
U.K. |
Energy |
0.42 ( 0.62) |
0.04 ( 0.11) |
0.44 ( 0.56) |
0.10 ( 0.11) |
U.K. |
Materials |
0.14 ( 0.43) |
0.00 ( 0.00) |
0.83 ( 0.42) |
0.03 ( 0.06) |
U.K. |
Industrials |
0.84 ( 0.24) |
0.02 ( 0.07) |
0.06 ( 0.16) |
0.09 ( 0.16) |
U.K. |
Discretionary |
0.85 ( 0.17) |
0.01 ( 0.04) |
0.07 ( 0.11) |
0.07 ( 0.09) |
U.K. |
Staples |
0.27 ( 0.44) |
0.00 ( 0.01) |
0.60 ( 0.57) |
0.13 ( 0.24) |
U.K. |
Healthcare |
0.64 ( 0.38) |
0.04 ( 0.07) |
0.23 ( 0.40) |
0.09 ( 0.06) |
U.K. |
Financials |
0.82 ( 0.28) |
0.04 ( 0.07) |
0.09 ( 0.18) |
0.05 ( 0.07) |
U.K. |
InfoTech |
0.28 ( 0.62) |
0.01 ( 0.04) |
0.56 ( 0.57) |
0.15 ( 0.22) |
U.K. |
Telecom |
0.71 ( 0.35) |
0.02 ( 0.10) |
0.04 ( 0.20) |
0.23 ( 0.24) |
U.K. |
Utilities |
0.15 ( 0.33) |
0.01 ( 0.04) |
0.77 ( 0.32) |
0.08 ( 0.11) |
Japan |
Energy |
0.02 ( 0.26) |
0.00 ( 0.12) |
0.20 ( 0.79) |
0.78 ( 0.79) |
Japan |
Materials |
0.12 ( 0.62) |
0.14 ( 0.51) |
0.23 ( 0.63) |
0.52 ( 0.84) |
Japan |
Industrials |
0.09 ( 0.47) |
0.40 ( 0.44) |
0.37 ( 0.54) |
0.14 ( 0.20) |
Japan |
Discretionary |
0.24 ( 0.92) |
0.47 ( 1.21) |
0.14 ( 0.59) |
0.16 ( 0.24) |
Japan |
Staples |
0.13 ( 0.67) |
0.20 ( 0.91) |
0.07 ( 0.63) |
0.60 ( 0.65) |
Japan |
Healthcare |
0.04 ( 0.33) |
0.36 ( 0.76) |
0.03 ( 0.40) |
0.56 ( 1.03) |
Japan |
Financials |
0.11 ( 0.49) |
0.66 ( 0.83) |
0.07 ( 0.42) |
0.17 ( 0.29) |
Japan |
InfoTech |
0.05 ( 0.28) |
0.16 ( 0.33) |
0.71 ( 0.50) |
0.08 ( 0.17) |
Japan |
Utilities |
0.00 ( 0.05) |
0.09 ( 0.36) |
0.26 ( 0.57) |
0.65 ( 0.47) |
Canada |
Energy |
0.03 ( 0.29) |
0.09 ( 0.28) |
0.22 ( 0.57) |
0.66 ( 0.48) |
Canada |
Materials |
0.03 ( 0.16) |
0.05 ( 0.12) |
0.82 ( 0.24) |
0.10 ( 0.21) |
Canada |
Industrials |
0.22 ( 0.48) |
0.49 ( 0.44) |
0.01 ( 0.11) |
0.28 ( 0.45) |
Canada |
Discretionary |
0.41 ( 0.51) |
0.36 ( 0.40) |
0.03 ( 0.12) |
0.20 ( 0.22) |
Canada |
Staples |
0.01 ( 0.10) |
0.18 ( 0.48) |
0.68 ( 0.51) |
0.13 ( 0.12) |
Canada |
Healthcare |
0.01 ( 0.15) |
0.54 ( 0.37) |
0.17 ( 0.35) |
0.28 ( 0.24) |
Canada |
Financials |
0.39 ( 0.36) |
0.00 ( 0.03) |
0.50 ( 0.32) |
0.11 ( 0.10) |
Canada |
InfoTech |
0.43 ( 0.43) |
0.27 ( 0.23) |
0.24 ( 0.42) |
0.05 ( 0.07) |
Canada |
Utilities |
0.10 ( 0.31) |
0.13 ( 0.36) |
0.03 ( 0.21) |
0.75 ( 0.56) |
U.S. |
Energy |
0.03 ( 0.23) |
0.01 ( 0.13) |
0.85 ( 0.26) |
0.11 ( 0.29) |
U.S. |
Materials |
0.07 ( 0.27) |
0.04 ( 0.07) |
0.69 ( 0.21) |
0.19 ( 0.14) |
U.S. |
Industrials |
0.66 ( 0.35) |
0.04 ( 0.11) |
0.18 ( 0.23) |
0.12 ( 0.13) |
U.S. |
Discretionary |
0.45 ( 0.34) |
0.01 ( 0.03) |
0.48 ( 0.31) |
0.06 ( 0.07) |
U.S. |
Staples |
0.36 ( 0.43) |
0.00 ( 0.00) |
0.61 ( 0.42) |
0.03 ( 0.05) |
U.S. |
Healthcare |
0.54 ( 0.47) |
0.00 ( 0.00) |
0.43 ( 0.47) |
0.03 ( 0.02) |
U.S. |
Financials |
0.66 ( 0.27) |
0.02 ( 0.05) |
0.26 ( 0.22) |
0.06 ( 0.08) |
U.S. |
InfoTech |
0.69 ( 0.32) |
0.01 ( 0.03) |
0.27 ( 0.31) |
0.03 ( 0.05) |
U.S. |
Telecom |
0.63 ( 0.40) |
0.15 ( 0.41) |
0.07 ( 0.26) |
0.15 ( 0.30) |
U.S. |
Utilities |
0.02 ( 0.18) |
0.02 ( 0.08) |
0.72 ( 0.33) |
0.23 ( 0.32) |
Note: Figures expressed as fractional contribution to stock
return variance
Footnotes
- 1 Tests
for the number of factors in an APT model typically reject a single
factor specification in favor of a multiple factor alternative, but
usually a single factor can explain most of the common variations.
More to the point, a statistically significant risk premium is
often obtained for only one factor (for example, see Connor and
Korajczyk (1988)). Even in a single factor model, if betas are
time-varying, the conditional mean returns of two assets need not
be perfectly correlated over time. However, Ferson and Harvey
(1991) found that time variation in factor risk premiums accounted
for more of the variation in conditional mean returns than did time
variation in factor loadings. Return to text
- 2 We get
very similar results when returns are measured in local currency
and we would expect to also get similar results for excess dollar
returns over the short dollar interest rate. Campbell and Ammer
(1993) find that variation in both realized and expected future
short-term interest rates are dwarfed by stock return volatility.
Return to text
- 3 The GMM
regression coefficients for lags of the state vector are identical
to OLS. However, GMM produces standard errors for the estimated
covariance matrix of the residuals, which is important for our
application. Return to
text
- 4 The
results here are not sensitive to our choice of 0.95 for the
log-linearization parameter (, which
corresponds to a Taylor approximation around a long-term
dividend-price ratio of about 5 percent. Results reported in Tables
8 and A4 are, however, sensitive to (. Return to text
This version is optimized for use by screen readers.
A printable pdf version is available.
|