February 2025

Portfolio Margining Using PCA Latent Factors

Shengwu Du and Travis D. Nesmith

Abstract:

Filtered historical simulation (FHS)—a simple method of calculating Value-at-Risk that reacts quickly to changes in market volatility—is a popular method for calculating margin at central counterparties. However, FHS does not address how correlation can vary through time. Typically, in margin systems, each risk factor is filtered individually so that the computational burden increases linearly as the number of risk factors grows. We propose an alternative method that filters historical returns using latent risk factors derived from principal component analysis. We compare this method's performance with "traditional" FHS for different simulated and constructed portfolios. The proposed method performs much better when there are large changes in correlation. It also performs well when that is not the case, although some care needs to be taken with certain concentrated portfolios. At the same time, the computational requirements can be reduced significantly. Backtesting comparisons are performed using data from 2020 when markets were stressed by the COVID-19 crisis.

Keywords: Portfolio risk, Value-at-Risk, Margin, CCPs, Principal component analysis (PCA), historical simulation, FHS

DOI: https://doi.org/10.17016/FEDS.2025.016

PDF: Full Paper

Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.

Last Update: February 25, 2025