Accessible Version
Assessing China's Efforts to Increase Self-Reliance, Accessible Data
Figure 1: Investment and Consumption share of GDP growth
Gross Capital Formation (Left Figure)
Percent of GDP
Year | United States | European Union | China | South Korea |
---|---|---|---|---|
1970 | 21.41473563 | 30.38915929 | 32.86947671 | 26.324823 |
1971 | 21.919818 | 29.16444006 | 33.63782808 | 24.97673066 |
1972 | 22.58062246 | 28.23933689 | 31.24831526 | 21.47995407 |
1973 | 23.33180859 | 28.75776914 | 32.95602337 | 26.01089139 |
1974 | 22.69494183 | 28.95774508 | 33.20619444 | 32.59962049 |
1975 | 20.27747575 | 25.50067578 | 35.03571856 | 28.5263098 |
1976 | 22.03839839 | 26.47225158 | 33.21976061 | 27.63597922 |
1977 | 23.52626973 | 25.74031285 | 33.87895996 | 30.10570665 |
1978 | 24.83178467 | 25.0258126 | 37.60381373 | 34.48448588 |
1979 | 25.1111298 | 25.94199323 | 36.29690312 | 37.47388303 |
1980 | 23.31027082 | 26.56697633 | 34.60519308 | 34.03062547 |
1981 | 24.27686456 | 24.16209368 | 32.94874956 | 32.15998454 |
1982 | 22.07008277 | 23.59122732 | 31.98010242 | 31.96698704 |
1983 | 22.2529869 | 22.82347182 | 31.92586289 | 32.47674431 |
1984 | 25.09581775 | 22.87900802 | 34.37840615 | 32.297977 |
1985 | 24.18834016 | 22.78942712 | 39.06410689 | 32.27005198 |
1986 | 23.74062452 | 22.68699624 | 37.72700169 | 32.61401086 |
1987 | 23.62023103 | 22.76893394 | 37.32087978 | 32.58555208 |
1988 | 22.82780776 | 23.83447785 | 39.07830939 | 34.81571591 |
1989 | 22.51379933 | 24.69541228 | 37.20868678 | 36.71606701 |
1990 | 21.52921345 | 24.90349905 | 34.15784885 | 39.55305296 |
1991 | 20.11060502 | 24.30974727 | 35.23636005 | 41.23401783 |
1992 | 20.077582 | 23.31853194 | 39.07186801 | 38.73834045 |
1993 | 20.39362787 | 21.4374161 | 43.28314976 | 37.65429611 |
1994 | 21.27909677 | 21.84195688 | 40.05028547 | 38.51260183 |
1995 | 21.27264914 | 22.28613599 | 38.8377198 | 38.94948795 |
1996 | 21.70181499 | 21.72904855 | 37.54172047 | 39.42351944 |
1997 | 22.40970908 | 21.95862407 | 35.52294565 | 37.18862188 |
1998 | 22.9583332 | 22.7100807 | 34.81368233 | 27.77904874 |
1999 | 23.41912715 | 22.98747286 | 34.10970891 | 31.01282773 |
2000 | 23.6783759 | 23.64826855 | 33.57302849 | 32.8936287 |
2001 | 22.1767206 | 23.01205379 | 35.54159672 | 31.60293756 |
2002 | 21.72265041 | 22.07237198 | 36.15344344 | 31.09283276 |
2003 | 21.74564312 | 22.04169164 | 39.62013059 | 32.27961522 |
2004 | 22.65215058 | 22.28902922 | 41.84719726 | 32.54955312 |
2005 | 23.37571468 | 22.52049062 | 40.34614955 | 32.50818478 |
2006 | 23.53752332 | 23.55243318 | 39.9103387 | 32.99330799 |
2007 | 22.55757783 | 24.43870119 | 40.48219017 | 33.09748305 |
2008 | 21.03749419 | 24.01175254 | 42.26902681 | 33.6668294 |
2009 | 17.76875578 | 20.62415868 | 45.35623583 | 29.39998973 |
2010 | 18.67222167 | 21.16982957 | 46.55615471 | 32.55211358 |
2011 | 19.03354326 | 21.7281582 | 46.6601211 | 33.31942582 |
2012 | 19.95072315 | 20.29065211 | 46.22526559 | 31.31664675 |
2013 | 20.34303358 | 19.88417975 | 46.39894934 | 29.88532729 |
2014 | 20.7783685 | 20.30815229 | 45.82395276 | 29.79047863 |
2015 | 21.20047568 | 20.76359549 | 43.23480666 | 29.52928082 |
2016 | 20.5667783 | 20.96156076 | 42.63137693 | 30.1426786 |
2017 | 20.81343098 | 21.57790247 | 43.01329739 | 32.28806347 |
2018 | 21.20591656 | 22.18686634 | 43.79347517 | 31.48718418 |
2019 | 21.31923246 | 22.90375863 | 43.25110564 | 31.49493367 |
2020 | 21.05096059 | 22.45225939 | 43.36667423 | 31.88458527 |
2021 | 21.10431481 | 23.47263491 | 43.14029907 | 32.32719378 |
2022 | 24.65450391 | 43.28930924 | 33.18135629 |
Household Consumption Expenditure (Right Figure)
Percent of GDP
Year | United States | European Union | China | South Korea |
---|---|---|---|---|
1970 | 60.25549169 | 56.40439578 | 52.93678993 | 73.7359651 |
1971 | 60.08816586 | 56.41397048 | 51.36554194 | 75.40430483 |
1972 | 60.05370922 | 56.3820714 | 52.2723711 | 72.75113059 |
1973 | 59.60357127 | 55.99019824 | 51.97373195 | 68.72433195 |
1974 | 60.19512789 | 56.04763912 | 51.87961948 | 68.8627451 |
1975 | 61.16354404 | 57.40799749 | 50.2878763 | 69.10068667 |
1976 | 61.26073709 | 57.36033849 | 53.15197751 | 64.36556851 |
1977 | 61.19507586 | 57.5431004 | 50.70153846 | 61.05674411 |
1978 | 60.48020942 | 56.93492029 | 47.8184901 | 59.69786718 |
1979 | 60.34332154 | 57.20265177 | 49.11564392 | 59.99481518 |
1980 | 61.26982505 | 57.79051481 | 50.93932817 | 62.72281253 |
1981 | 60.30328268 | 58.39257905 | 53.23379267 | 62.77758316 |
1982 | 61.94338219 | 58.49641006 | 53.35813155 | 61.58263887 |
1983 | 62.78429119 | 58.28871352 | 53.49573051 | 58.45584833 |
1984 | 61.72805566 | 57.87079766 | 50.69102135 | 56.55180662 |
1985 | 62.52231228 | 57.82127012 | 50.85690006 | 55.94595239 |
1986 | 63.02424802 | 57.17751286 | 51.01619905 | 53.2473409 |
1987 | 63.36030433 | 57.4849404 | 49.67393367 | 50.76164072 |
1988 | 63.59307606 | 56.85693833 | 49.61759945 | 48.87999359 |
1989 | 63.39993406 | 56.85059999 | 51.0948901 | 50.60222507 |
1990 | 63.87559985 | 56.50691534 | 49.99260181 | 50.22906298 |
1991 | 64.03647926 | 56.42991396 | 47.9171579 | 50.33163409 |
1992 | 64.37651056 | 56.77628254 | 45.27461981 | 50.92775549 |
1993 | 64.91136112 | 56.8392488 | 43.99616115 | 51.11486627 |
1994 | 64.78402785 | 56.4570258 | 44.08781767 | 51.75157466 |
1995 | 64.95750057 | 55.8832138 | 45.7541657 | 51.96231574 |
1996 | 64.96366585 | 56.22094919 | 46.84924222 | 53.24971392 |
1997 | 64.54975049 | 55.954489 | 45.89575779 | 53.3992876 |
1998 | 64.85011471 | 55.78482482 | 45.50532406 | 50.31457593 |
1999 | 65.24394306 | 55.9152018 | 46.20561664 | 52.61227857 |
2000 | 66.01515296 | 55.94251897 | 46.73235842 | 54.50010006 |
2001 | 66.84792992 | 55.82473868 | 45.51980966 | 55.4002687 |
2002 | 67.24187983 | 55.52112077 | 44.91301883 | 56.09577322 |
2003 | 67.56678009 | 55.68745562 | 42.70778499 | 54.0668048 |
2004 | 67.3801246 | 55.42919959 | 40.6109056 | 51.59404174 |
2005 | 67.25156868 | 55.64484961 | 39.58687836 | 52.31730649 |
2006 | 67.15050207 | 55.12064408 | 37.75197952 | 53.03071843 |
2007 | 67.33757916 | 54.51017804 | 36.36952582 | 52.47594617 |
2008 | 68.04454762 | 54.87012985 | 35.28788015 | 52.53397435 |
2009 | 68.31864648 | 55.87070159 | 35.3272959 | 51.6704516 |
2010 | 68.17914972 | 55.626384 | 34.32634109 | 50.43517702 |
2011 | 68.58361194 | 55.42188926 | 34.92042834 | 51.1987727 |
2012 | 67.96715808 | 55.62880375 | 35.38653491 | 51.26770748 |
2013 | 67.46659825 | 55.27833703 | 35.83313112 | 50.50608698 |
2014 | 67.50578828 | 54.73029535 | 36.70789836 | 49.93590559 |
2015 | 67.35945309 | 54.03634853 | 37.77300365 | 48.54056078 |
2016 | 67.89617942 | 53.87118862 | 38.67498195 | 47.95580095 |
2017 | 67.94362754 | 53.60906612 | 38.54274622 | 47.54547343 |
2018 | 67.7199639 | 53.47889318 | 38.52188052 | 48.02337234 |
2019 | 67.31554687 | 53.02536159 | 39.24806213 | 48.63261751 |
2020 | 67.02682124 | 51.52521422 | 38.20031239 | 46.3909283 |
2021 | 68.20724878 | 50.81582323 | 38.11356525 | 45.95799872 |
2022 | 52.15379981 | 37.01103361 | 48.08078218 |
Note: The data extend through 2022 (2021 for the U.S.).
Source: The World Bank, World Development Indicators Online.
Figure 2: Evolution of Chinese GDP versus trade
Evolution of GDP, Exports, & Imports (Left Figure)
2019 Q4 = 100
Date | GDP | Exports | Imports |
---|---|---|---|
2013:Q1 | 64.36917592 | 91.26718349 | 94.11050179 |
2013:Q2 | 65.46796102 | 86.77090063 | 90.49077005 |
2013:Q3 | 66.86756231 | 85.09879911 | 92.203684 |
2013:Q4 | 68.0241758 | 88.68808609 | 92.34613078 |
2014:Q1 | 69.20675387 | 87.16281881 | 96.94404722 |
2014:Q2 | 70.45598419 | 91.31097529 | 92.26966062 |
2014:Q3 | 71.70971054 | 96.20256221 | 92.8533707 |
2014:Q4 | 72.95162333 | 95.5606225 | 90.06888922 |
2015:Q1 | 74.13328508 | 94.59688058 | 80.16036963 |
2015:Q2 | 75.45910455 | 88.71384984 | 80.10085315 |
2015:Q3 | 76.73170437 | 90.01177045 | 79.32698473 |
2015:Q4 | 77.98122127 | 90.190525 | 78.82473893 |
2016:Q1 | 79.26672256 | 81.18908186 | 69.24783222 |
2016:Q2 | 80.58030439 | 83.16794577 | 74.58245072 |
2016:Q3 | 81.92148515 | 83.71552824 | 75.64802699 |
2016:Q4 | 83.36867213 | 85.27115256 | 80.67025895 |
2017:Q1 | 84.87008237 | 86.73105235 | 86.86969879 |
2017:Q2 | 86.25216367 | 89.81654061 | 85.1767493 |
2017:Q3 | 87.4350155 | 89.02749046 | 86.7543543 |
2017:Q4 | 89.02788834 | 93.62898876 | 91.43445434 |
2018:Q1 | 90.90001995 | 100.8882922 | 102.6517929 |
2018:Q2 | 92.26650644 | 100.0139192 | 102.8029862 |
2018:Q3 | 93.1030279 | 99.53302493 | 104.5235564 |
2018:Q4 | 94.70686475 | 97.70372485 | 96.4603849 |
2019:Q1 | 96.91847988 | 99.60970895 | 97.77342578 |
2019:Q2 | 97.85177864 | 98.89030125 | 99.15245731 |
2019:Q3 | 98.49124353 | 99.19082147 | 98.05985629 |
2019:Q4 | 100 | 100 | 100 |
2020:Q1 | 90.39453398 | 83.27893852 | 94.54180401 |
2020:Q2 | 101.0392331 | 98.62085273 | 89.30515564 |
2020:Q3 | 103.2138592 | 107.4637342 | 101.3126845 |
2020:Q4 | 106.2247765 | 117.0737959 | 105.2877912 |
2021:Q1 | 107.2184009 | 129.0410265 | 120.979843 |
2021:Q2 | 109.623355 | 128.3050677 | 128.7902368 |
2021:Q3 | 108.6617614 | 132.9234249 | 128.3064741 |
2021:Q4 | 110.7511497 | 144.5308785 | 131.5107482 |
2022:Q1 | 112.0327982 | 145.5324828 | 133.0630742 |
2022:Q2 | 110.3558345 | 142.0382104 | 129.6770242 |
2022:Q3 | 112.9721457 | 144.6643139 | 128.9890758 |
2022:Q4 | 113.9941883 | 132.9811654 | 122.8022508 |
2023:Q1 | 116.8622844 | 142.7179618 | 123.8708315 |
2023:Q2 | 117.4767423 | 135.0906559 | 120.4563174 |
2023:Q3 | 118.4776369 | 130.3429763 | 118.2100522 |
2023:Q4 | 119.9357771 | 131.6461622 | 123.9611351 |
Note: Series are seasonally adjusted.
Source: Haver Analytics; FRB staff calculations.
Correlation of Trade Growth with GDP growth (Right Figure)
Date | Exports | Imports |
---|---|---|
2014:Q1 | 0.248402183 | 0.777083389 |
2014:Q2 | 0.47743174 | 0.638974797 |
2014:Q3 | 0.448028992 | 0.553721667 |
2014:Q4 | 0.407355489 | 0.537362283 |
2015:Q1 | 0.423871814 | 0.565900948 |
2015:Q2 | 0.37501482 | 0.558220612 |
2015:Q3 | 0.406774543 | 0.654902453 |
2015:Q4 | 0.373053768 | 0.56583769 |
2016:Q1 | 0.388727644 | 0.32230124 |
2016:Q2 | 0.266045446 | 0.300482908 |
2016:Q3 | 0.245821822 | 0.247350399 |
2016:Q4 | 0.232376307 | 0.260633314 |
2017:Q1 | 0.247881029 | 0.244734096 |
2017:Q2 | 0.092138256 | 0.314228803 |
2017:Q3 | 0.142835816 | 0.246490395 |
2017:Q4 | 0.162732198 | 0.249021875 |
2018:Q1 | 0.294274023 | 0.424224299 |
2018:Q2 | 0.311698887 | 0.416038166 |
2018:Q3 | 0.383717732 | 0.292118765 |
2018:Q4 | 0.366190121 | 0.266024891 |
2019:Q1 | 0.351399899 | 0.228423623 |
2019:Q2 | 0.336014854 | 0.209617928 |
2019:Q3 | 0.270902843 | 0.218995706 |
2019:Q4 | 0.276940744 | 0.232716165 |
2020:Q1 | 0.671290964 | 0.309201536 |
2020:Q2 | 0.889115461 | -0.011898754 |
2020:Q3 | 0.863187598 | 0.004332172 |
2020:Q4 | 0.853880351 | 0.008836692 |
2021:Q1 | 0.854314323 | -0.02256575 |
2021:Q2 | 0.844166736 | -0.017974022 |
2021:Q3 | 0.832727039 | 0.003213839 |
2021:Q4 | 0.821248363 | 0.001902948 |
2022:Q1 | 0.822357788 | 0.002187535 |
2022:Q2 | 0.828092892 | 0.03613585 |
2022:Q3 | 0.829276555 | 0.029405138 |
2022:Q4 | 0.802821076 | 0.035349304 |
2023:Q1 | 0.807209838 | 0.018839755 |
2023:Q2 | 0.803727258 | 0.02746641 |
2023:Q3 | 0.798740666 | 0.031968423 |
2023:Q4 | 0.806876091 | 0.036717938 |
Note: The data extend through 2023:04. Pearson correlations are calculated on 5-year moving windows of 4-quarter growth. The x-axis values are the end dates of the 5-year windows.
Source: Haver Analytics; FRB staff calculations.
Figure 3: Evolution of Chinese imports by sector
2019 Q4 = 100
Date | Agricultural products | Mechanical and electrical products | High tech products | Commodities | Other imports |
---|---|---|---|---|---|
2017:Q1 | 77.50772787 | 89.85238984 | 69.62751213 | 75.46125505 | 89.71359261 |
2017:Q2 | 74.80950795 | 90.12719268 | 78.59378609 | 70.65583448 | 80.66497885 |
2017:Q3 | 77.00618737 | 96.19918515 | 92.07957958 | 69.64934965 | 86.10535155 |
2017:Q4 | 79.47640311 | 99.76521306 | 97.45379995 | 76.71668267 | 92.59294536 |
2018:Q1 | 84.14543555 | 108.0480042 | 87.07669208 | 93.58480901 | 97.1837114 |
2018:Q2 | 86.78828524 | 106.2667462 | 94.03037653 | 97.85811224 | 105.2204526 |
2018:Q3 | 85.53210805 | 112.7618981 | 108.6342111 | 102.7636091 | 105.850712 |
2018:Q4 | 79.94259898 | 98.30599179 | 97.69115269 | 107.7162875 | 97.26412757 |
2019:Q1 | 89.11727439 | 98.97768873 | 81.59274659 | 91.63892847 | 99.17415938 |
2019:Q2 | 87.03413635 | 99.70710374 | 88.28771079 | 100.9166327 | 103.0644096 |
2019:Q3 | 91.61093085 | 100.0022264 | 98.04111804 | 96.17381464 | 98.91454966 |
2019:Q4 | 100 | 100 | 100 | 100 | 100 |
2020:Q1 | 98.01185558 | 95.98920225 | 81.28609379 | 98.17765629 | 97.49698244 |
2020:Q2 | 101.6144606 | 98.76861041 | 92.43069993 | 65.03144689 | 100.7495122 |
2020:Q3 | 104.4910525 | 107.760252 | 107.3065373 | 87.21480523 | 108.6634791 |
2020:Q4 | 116.0901199 | 114.603631 | 114.6153846 | 74.94074604 | 115.3205572 |
2021:Q1 | 129.7728277 | 124.5018204 | 106.3063063 | 98.53253741 | 125.2346615 |
2021:Q2 | 135.0846213 | 128.7383237 | 118.0520906 | 104.0233617 | 123.9507302 |
2021:Q3 | 138.2244571 | 123.6544738 | 126.2722338 | 118.6549551 | 123.7593454 |
2021:Q4 | 135.7956593 | 125.7147731 | 133.7716563 | 133.8450289 | 126.5669944 |
2022:Q1 | 138.3268296 | 130.4723757 | 112.49769 | 138.279129 | 122.5563745 |
2022:Q2 | 142.2366396 | 117.3939618 | 108.6873412 | 156.3822602 | 115.7510293 |
2022:Q3 | 148.9376397 | 112.9231359 | 114.7707323 | 147.7410049 | 108.3674652 |
2022:Q4 | 150.5285117 | 104.1274416 | 105.8766459 | 149.8360641 | 99.19178628 |
2023:Q1 | 156.2462401 | 100.9955111 | 88.19357819 | 138.6688422 | 100.8214053 |
2023:Q2 | 148.0150913 | 101.9609572 | 95.17729268 | 141.8048305 | 92.58652962 |
2023:Q3 | 133.9787109 | 101.6292551 | 102.4982675 | 141.7329462 | 91.6855578 |
2023:Q4 | 141.8012276 | 106.315643 | 109.8429198 | 151.1775787 | 91.63660917 |
Note: Data are seasonally adjusted and end in 2023:04. Categories are non-overlapping, based on national definitions of major categories. Commodities includes coal and lignite, crude oil, refined petroleum products, fertilizers, steel or iron products, unwrought copper and copper, and unwrought aluminum and aluminum. Other imports includes beauty cosmetics and toiletries, plastics in primary forms, textile yarns, fabrics, and their products, and garments and clothing accessories.
Share of total imports: 35% mechanical and electrical products, 23% high tech products, 18% commodities, 10% agricultural products, 3% other imports, 2% medicinal materials and pharmaceutical products (not shown).
Source: Haver Analytics.
Figure 4: Chinese trade by sector
Mechanical & Electrical Goods (Left Figure)
2019 Q4 = 100
Date | Imports | Exports |
---|---|---|
2013:Q1 | 97.96757702 | 93.62743318 |
2013:Q2 | 91.66138124 | 87.0760499 |
2013:Q3 | 91.15447193 | 83.70809711 |
2013:Q4 | 87.92472353 | 84.74967413 |
2014:Q1 | 93.60119546 | 86.93246078 |
2014:Q2 | 94.59431397 | 89.54075695 |
2014:Q3 | 93.94921967 | 90.93298024 |
2014:Q4 | 93.20003262 | 91.79217877 |
2015:Q1 | 90.73076663 | 94.40621927 |
2015:Q2 | 88.78081072 | 89.73965934 |
2015:Q3 | 86.28987957 | 90.12986731 |
2015:Q4 | 90.10508718 | 89.64210185 |
2016:Q1 | 81.18896203 | 83.82859071 |
2016:Q2 | 84.85987857 | 84.65579686 |
2016:Q3 | 84.49586539 | 84.05621752 |
2016:Q4 | 88.72739574 | 84.65775379 |
2017:Q1 | 89.60098525 | 87.86304847 |
2017:Q2 | 89.90374469 | 89.7164099 |
2017:Q3 | 95.97667708 | 90.63867518 |
2017:Q4 | 99.68318606 | 95.44926124 |
2018:Q1 | 107.6833389 | 102.9180312 |
2018:Q2 | 105.9991156 | 101.9706173 |
2018:Q3 | 112.498894 | 101.4181855 |
2018:Q4 | 98.31963685 | 98.80157516 |
2019:Q1 | 98.57710081 | 100.8003562 |
2019:Q2 | 99.45652005 | 100.5553727 |
2019:Q3 | 99.79150744 | 100.1978002 |
2019:Q4 | 100 | 100 |
2020:Q1 | 95.53650469 | 84.33313017 |
2020:Q2 | 98.51565407 | 102.2339332 |
2020:Q3 | 107.5498036 | 111.1495417 |
2020:Q4 | 114.6287203 | 120.8090057 |
2021:Q1 | 123.8718669 | 134.2526477 |
2021:Q2 | 128.4018885 | 132.3845351 |
2021:Q3 | 123.4114462 | 135.2039177 |
2021:Q4 | 125.7944814 | 145.1416576 |
2022:Q1 | 129.7183263 | 149.7356026 |
2022:Q2 | 117.0775537 | 141.7570408 |
2022:Q3 | 112.7129838 | 145.3096725 |
2022:Q4 | 104.2646883 | 133.1518408 |
2023:Q1 | 100.3461205 | 147.4060166 |
2023:Q2 | 101.6882019 | 140.8185952 |
2023:Q3 | 101.4448144 | 132.9453223 |
High Tech Goods (Right Figure)
2019 Q4 = 100
Date | Imports | Exports |
---|---|---|
2013:Q1 | 94.43035862 | 104.0060011 |
2013:Q2 | 85.05677533 | 91.50092975 |
2013:Q3 | 84.45559264 | 86.91245088 |
2013:Q4 | 79.73983681 | 83.47943046 |
2014:Q1 | 84.53179379 | 89.77538694 |
2014:Q2 | 84.95038382 | 90.32934616 |
2014:Q3 | 85.19659626 | 91.08822754 |
2014:Q4 | 84.83508641 | 91.61382215 |
2015:Q1 | 84.47143151 | 91.74587894 |
2015:Q2 | 84.03828717 | 90.4917791 |
2015:Q3 | 83.15347371 | 90.52214424 |
2015:Q4 | 87.38481936 | 90.36532268 |
2016:Q1 | 76.58790704 | 83.10274874 |
2016:Q2 | 81.37670485 | 84.05404897 |
2016:Q3 | 80.75997831 | 83.0763132 |
2016:Q4 | 84.24906651 | 84.07070172 |
2017:Q1 | 84.60521069 | 87.78909957 |
2017:Q2 | 86.59525426 | 88.71102942 |
2017:Q3 | 91.59512027 | 92.6285512 |
2017:Q4 | 96.38032253 | 96.49249291 |
2018:Q1 | 103.775282 | 104.6061044 |
2018:Q2 | 103.8260315 | 103.3757141 |
2018:Q3 | 108.22611 | 104.2149518 |
2018:Q4 | 97.7426009 | 100.5236765 |
2019:Q1 | 96.15314501 | 101.1454723 |
2019:Q2 | 97.60662137 | 100.7339023 |
2019:Q3 | 97.954757 | 100.5964155 |
2019:Q4 | 100 | 100 |
2020:Q1 | 95.60029025 | 86.57879149 |
2020:Q2 | 102.0381625 | 108.5730623 |
2020:Q3 | 107.4825619 | 110.951541 |
2020:Q4 | 114.4065837 | 117.9567888 |
2021:Q1 | 123.5448826 | 130.1845893 |
2021:Q2 | 130.2443083 | 131.3932156 |
2021:Q3 | 127.6295542 | 133.8023727 |
2021:Q4 | 133.3198157 | 142.7335019 |
2022:Q1 | 131.052976 | 146.4474041 |
2022:Q2 | 119.8007068 | 134.0795447 |
2022:Q3 | 116.7426732 | 132.4909061 |
2022:Q4 | 105.5572014 | 115.6887294 |
2023:Q1 | 102.5399543 | 122.708602 |
2023:Q2 | 104.8423316 | 117.5065383 |
2023:Q3 | 104.4617622 | 114.8677492 |
Note: Data are seasonally adjusted and end in 2023:Q3.
Source: Haver Analytics.
Figure 5: Vehicle Production
Vehicle Production and Destinations (Left Figure)
Dec. 2019 = 100
Date | Exports | Output | Domestic sales |
---|---|---|---|
January-10 | 64.10415959 | 62.70102003 | |
February-10 | 66.312541 | 71.25580846 | |
March-10 | 66.05398531 | 66.1787356 | |
April-10 | 66.58223761 | 66.28607558 | |
May-10 | 66.14015237 | 66.85852596 | |
June-10 | 66.46258018 | 66.67871574 | |
July-10 | 66.32263359 | 66.21944403 | |
August-10 | 64.54172162 | 66.81650404 | |
September-10 | 68.99961018 | 68.09331864 | |
October-10 | 70.22346223 | 71.18069024 | |
November-10 | 73.07993546 | 72.21387277 | |
December-10 | 74.98105926 | 70.72294267 | |
January-11 | 63.93799651 | 71.36621151 | 71.39639612 |
February-11 | 60.80129685 | 69.53031675 | 74.21645415 |
March-11 | 61.0339491 | 69.18507695 | 69.52334242 |
April-11 | 65.58739684 | 65.56183509 | 67.20770228 |
May-11 | 55.84245278 | 62.70438973 | 64.50666401 |
June-11 | 76.69018019 | 67.38145506 | 67.76943933 |
July-11 | 72.16884348 | 67.62088182 | 68.55332108 |
August-11 | 76.10245149 | 70.46414467 | 69.68467297 |
September-11 | 71.79674714 | 69.75070917 | 72.20425157 |
October-11 | 78.58741801 | 71.10533013 | 69.96655117 |
November-11 | 73.72993372 | 69.82820662 | 69.81645576 |
December-11 | 69.02817281 | 67.91746042 | 70.50796473 |
January-12 | 63.34478567 | 51.56105603 | 52.72587046 |
February-12 | 59.5436761 | 89.22235384 | 91.34176662 |
March-12 | 70.99235136 | 71.68972028 | 70.80053942 |
April-12 | 75.47290626 | 70.57759762 | 71.11089737 |
May-12 | 82.86058242 | 72.6571459 | 74.64333299 |
June-12 | 77.038719 | 73.88958391 | 74.60084904 |
July-12 | 88.29864856 | 74.94536956 | 75.0062434 |
August-12 | 104.8573597 | 76.4320827 | 75.6810225 |
September-12 | 89.19415307 | 72.95543345 | 71.74391213 |
October-12 | 78.91339355 | 70.97033625 | 72.88916418 |
November-12 | 73.99319442 | 71.292444 | 74.43329686 |
December-12 | 78.43595138 | 71.0122256 | 73.70968721 |
January-13 | 85.50036134 | 78.04085215 | 77.78579664 |
February-13 | 87.58389344 | 75.31930902 | 78.41125272 |
March-13 | 80.62515763 | 79.91732826 | 79.44492584 |
April-13 | 76.49178301 | 81.90282405 | 80.99233935 |
May-13 | 72.59098734 | 82.22942012 | 81.82699387 |
June-13 | 88.65979412 | 81.23726624 | 83.73670916 |
July-13 | 65.11802778 | 83.20781394 | 83.87551392 |
August-13 | 66.82182166 | 86.3927169 | 84.57218606 |
September-13 | 62.19849956 | 85.13643879 | 86.13659054 |
October-13 | 70.18090187 | 84.47168029 | 86.11974019 |
November-13 | 83.92382326 | 84.52044947 | 83.25829768 |
December-13 | 67.48795776 | 83.53519289 | 83.91430175 |
January-14 | 93.09217897 | 81.53739233 | 83.23304289 |
February-14 | 58.28190267 | 92.85629321 | 92.70461178 |
March-14 | 70.78514243 | 85.1444675 | 85.91980056 |
April-14 | 74.83525594 | 90.14624022 | 89.01375522 |
May-14 | 74.41345953 | 91.79147943 | 89.28533407 |
June-14 | 67.9728088 | 90.50115938 | 89.53238773 |
July-14 | 74.52625529 | 90.96829698 | 91.09561348 |
August-14 | 64.90994969 | 89.41093434 | 89.25268885 |
September-14 | 77.13554343 | 88.57892155 | 88.28953027 |
October-14 | 72.97999164 | 88.80257126 | 86.6530467 |
November-14 | 77.45213196 | 83.35982337 | 82.46815165 |
December-14 | 83.01654478 | 87.38140497 | 91.18230392 |
January-15 | 78.07371108 | 91.38542272 | 90.63951377 |
February-15 | 82.83277107 | 94.58642674 | 93.63633759 |
March-15 | 49.77237478 | 89.71773674 | 90.02972709 |
April-15 | 59.53504343 | 92.2270511 | 90.96731109 |
May-15 | 61.96577319 | 92.18170823 | 90.69647755 |
June-15 | 59.63361298 | 90.37405909 | 88.76605506 |
July-15 | 59.63738541 | 80.31526487 | 85.69190563 |
August-15 | 55.29132982 | 82.58880409 | 87.67411457 |
September-15 | 62.32342697 | 83.18005724 | 88.88894198 |
October-15 | 49.86054958 | 93.66506531 | 94.18039502 |
November-15 | 45.58614603 | 96.28077648 | 96.18913044 |
December-15 | 46.22586014 | 99.21600902 | 102.2727022 |
January-16 | 43.65906248 | 98.61188824 | 99.28800199 |
February-16 | 54.17444576 | 96.19611548 | 95.85049256 |
March-16 | 59.91964868 | 100.1323005 | 99.45667765 |
April-16 | 61.02190245 | 98.58083429 | 100.2967569 |
May-16 | 63.07403892 | 98.55716705 | 101.5395874 |
June-16 | 58.37906877 | 100.3589639 | 102.6227043 |
July-16 | 61.01888197 | 103.6996941 | 105.3168256 |
August-16 | 72.42020011 | 104.3215883 | 106.8123635 |
September-16 | 72.39061742 | 108.8162355 | 109.4200774 |
October-16 | 69.32838798 | 108.5898665 | 110.2923375 |
November-16 | 72.31479902 | 110.8152775 | 110.6003058 |
December-16 | 72.53508613 | 113.0834009 | 110.7580829 |
January-17 | 76.04516155 | 96.37380307 | 102.0154636 |
February-17 | 66.7391893 | 134.450421 | 121.7243082 |
March-17 | 69.69122243 | 105.1942551 | 104.5825175 |
April-17 | 72.10005147 | 99.10775923 | 101.2166645 |
May-17 | 83.8692626 | 100.5499746 | 103.1603871 |
June-17 | 86.84084195 | 104.4368378 | 105.9436765 |
July-17 | 89.19792977 | 106.9581507 | 109.7184022 |
August-17 | 89.2810315 | 107.3327866 | 109.5959639 |
September-17 | 82.29919994 | 112.8025209 | 112.7204185 |
October-17 | 98.00296775 | 107.3802647 | 110.499509 |
November-17 | 99.00601653 | 111.7887592 | 110.5513373 |
December-17 | 98.74812728 | 112.2298752 | 111.9446723 |
January-18 | 81.4902114 | 111.3632596 | 115.7343027 |
February-18 | 102.2037198 | 111.065832 | 112.7755709 |
March-18 | 73.96094838 | 107.7045691 | 111.078521 |
April-18 | 112.2564691 | 113.1097784 | 114.9114446 |
May-18 | 97.86158195 | 114.4838748 | 113.8694944 |
June-18 | 177.3926306 | 109.0809897 | 107.7629438 |
July-18 | 93.85970924 | 103.854575 | 101.8375104 |
August-18 | 106.7784007 | 100.5108037 | 102.8497738 |
September-18 | 102.3353665 | 98.40701139 | 98.58403524 |
October-18 | 94.76414218 | 95.40319975 | 97.10470312 |
November-18 | 75.74150708 | 89.90841789 | 95.45118061 |
December-18 | 145.3822077 | 91.60170938 | 98.78847903 |
January-19 | 89.63526667 | 100.0318921 | 99.41408004 |
February-19 | 74.09164344 | 95.60904581 | 101.2257251 |
March-19 | 100.5700101 | 107.3402074 | 106.1622932 |
April-19 | 93.87393652 | 97.80136547 | 98.42911976 |
May-19 | 107.1224253 | 90.6879224 | 95.23383566 |
June-19 | 114.1661609 | 88.35684313 | 95.30460524 |
July-19 | 116.1151255 | 89.02190825 | 94.2043604 |
August-19 | 98.4232708 | 97.89888083 | 94.92781541 |
September-19 | 102.0954631 | 91.48569285 | 93.95022684 |
October-19 | 91.45956346 | 92.9174437 | 92.7786223 |
November-19 | 96.36615405 | 94.65281688 | 92.21439862 |
December-19 | 100 | 100 | 100 |
January-20 | 93.26932456 | 76.12246708 | 81.69661167 |
February-20 | 62.10948357 | 20.12269273 | 21.68896922 |
March-20 | 78.19732314 | 60.6893626 | 62.43346156 |
April-20 | 96.75323988 | 100.7620359 | 102.8000448 |
May-20 | 59.8699341 | 107.6326072 | 109.8283679 |
June-20 | 61.0518777 | 106.4554326 | 103.4336961 |
July-20 | 76.38768939 | 106.2325132 | 104.9277029 |
August-20 | 81.91792894 | 102.3465132 | 105.3694737 |
September-20 | 94.47091631 | 104.6745682 | 107.3942192 |
October-20 | 109.3467279 | 102.6648315 | 105.0949892 |
November-20 | 114.4297253 | 105.1446303 | 106.6466852 |
December-20 | 122.1987082 | 106.2846973 | 106.7658236 |
January-21 | 140.6593392 | 103.5383448 | 106.2133264 |
February-21 | 149.661775 | 105.9275624 | 99.95852939 |
March-21 | 151.9172531 | 105.4198638 | 110.3643935 |
April-21 | 164.0489526 | 108.0460679 | 111.2555754 |
May-21 | 175.5406213 | 100.4792545 | 106.3652348 |
June-21 | 189.0085761 | 87.02709885 | 89.94600967 |
July-21 | 165.7446674 | 88.046212 | 89.92961606 |
August-21 | 193.5878334 | 82.38829921 | 86.24833265 |
September-21 | 161.8098903 | 85.80144556 | 87.15651343 |
October-21 | 195.9634169 | 93.49698628 | 95.64115981 |
November-21 | 193.00359 | 97.49223564 | 99.90993564 |
December-21 | 183.6263295 | 109.5009198 | 105.1824625 |
January-22 | 235.0303392 | 105.6662031 | 106.6466829 |
February-22 | 251.9720831 | 128.3966771 | 115.9245671 |
March-22 | 205.3423701 | 95.75649935 | 98.95668345 |
April-22 | 178.9014162 | 58.63910867 | 58.83510086 |
May-22 | 235.4081773 | 94.69536484 | 93.96226906 |
June-22 | 250.2806666 | 111.0165951 | 110.2015147 |
July-22 | 267.0797348 | 114.5919934 | 114.5155271 |
August-22 | 286.7660183 | 113.1210973 | 111.9893834 |
September-22 | 331.7770109 | 110.4364687 | 109.6911908 |
October-22 | 305.9594235 | 104.3778551 | 103.6747878 |
November-22 | 323.3496084 | 91.14104649 | 95.09881993 |
December-22 | 334.3258596 | 89.70340278 | 96.85528615 |
January-23 | 311.1073054 | 69.51839472 | 69.0200879 |
February-23 | 378.812016 | 143.4961562 | 129.2346675 |
March-23 | 400.0150209 | 110.8007367 | 108.1984119 |
April-23 | 439.0255795 | 103.7157811 | 107.9518881 |
May-23 | 452.4809752 | 114.480498 | 120.14041 |
June-23 | 415.5021009 | 113.1284287 | 115.234502 |
July-23 | 439.8472027 | 111.3717302 | 112.7964686 |
August-23 | 407.105762 | 121.4270096 | 120.1118311 |
September-23 | 458.6760526 | 117.5280377 | 119.7466237 |
October-23 | 456.2044463 | 116.0773717 | 118.4558243 |
November-23 | 457.3209022 | 119.43063 | 122.4418794 |
December-23 | 460.4869686 | 115.8033743 | 120.0973269 |
Market Penetration Rate (Right Figure)
Percent
Date | New energy vehicles | Internal combustion engine vehicles |
---|---|---|
October-19 | 3.37495 | 96.78362 |
November-19 | 3.25219 | 98.24596 |
December-19 | 5.36423 | 95.33276 |
January-20 | 3.01016 | 92.4341 |
February-20 | 5.18292 | 94.02958 |
March-20 | 4.8042 | 96.70153 |
April-20 | 4.20776 | 95.67054 |
May-20 | 4.43095 | 95.22249 |
June-20 | 4.93105 | 95.29619 |
July-20 | 5.22952 | 94.60418 |
August-20 | 5.39866 | 95.10485 |
September-20 | 5.57174 | 95.80775 |
October-20 | 6.58214 | 93.52677 |
November-20 | 7.22022 | 93.66618 |
December-20 | 8.01094 | 92.29843 |
January-21 | 8.57706 | 88.24848 |
February-21 | 8.72064 | 90.77935 |
March-21 | 9.69991 | 91.24134 |
April-21 | 10.52479 | 89.82616 |
May-21 | 12.26214 | 87.89921 |
June-21 | 14.31977 | 85.74651 |
July-21 | 15.11768 | 84.93136 |
August-21 | 17.02655 | 83.27459 |
September-21 | 20.45554 | 80.19388 |
October-21 | 18.24645 | 81.68185 |
November-21 | 18.39078 | 80.77344 |
December-21 | 19.88128 | 78.68961 |
January-22 | 21.42376 | 78.58934 |
February-22 | 23.31238 | 77.37337 |
March-22 | 25.72307 | 73.37069 |
April-22 | 29.05617 | 72.68133 |
May-22 | 28.23267 | 72.9645 |
June-22 | 26.9334 | 72.91664 |
July-22 | 27.26892 | 73.04476 |
August-22 | 28.1205 | 71.98755 |
September-22 | 30.80444 | 69.33737 |
October-22 | 29.7134 | 70.03735 |
November-22 | 32.21259 | 64.82071 |
December-22 | 26.17496 | 71.4742 |
January-23 | 32.24269 | 70.45484 |
February-23 | 33.99006 | 67.56339 |
March-23 | 31.40576 | 67.03279 |
April-23 | 34.79208 | 67.3746 |
May-23 | 35.38381 | 66.27716 |
June-23 | 34.62584 | 65.09232 |
July-23 | 36.9634 | 63.56141 |
August-23 | 36.81175 | 63.14503 |
September-23 | 35.82385 | 64.07175 |
October-23 | 37.4896 | 62.14074 |
November-23 | 35.79177 | 60.68973 |
December-23 | 35.54908 | 60.72719 |
Note: New energy vehicles is the term used by the Chinese government for vehicles that are predominantly powered by electricity. The market penetration rate is the percentage ratio of each type of vehicle sales to total passenger vehicle sales.
Source: Haver Analytics.
Figure 6: Share of vehicles assembled in China that are “domestic made”
Percent of total domestic production
Date | Domestic made | Completely knocked down |
---|---|---|
January-10 | 98.48856234 | 1.511437656 |
February-10 | 98.19078279 | 1.809217208 |
March-10 | 98.48104302 | 1.51895698 |
April-10 | 98.47019832 | 1.52980168 |
May-10 | 98.43522898 | 1.564771016 |
June-10 | 98.22925738 | 1.77074262 |
July-10 | 97.92654397 | 2.07345603 |
August-10 | 97.9514632 | 2.048536804 |
September-10 | 98.33833046 | 1.661669542 |
October-10 | 98.28841527 | 1.711584734 |
November-10 | 97.97346545 | 2.026534547 |
December-10 | 97.94754589 | 2.052454107 |
January-11 | 98.17065065 | 1.829349349 |
February-11 | 98.20490847 | 1.795091528 |
March-11 | 98.20293218 | 1.797067821 |
April-11 | 98.52175102 | 1.478248976 |
May-11 | 99.07399514 | 0.926004865 |
June-11 | 97.64463419 | 2.355365807 |
July-11 | 98.32392097 | 1.676079027 |
August-11 | 98.29181556 | 1.70818444 |
September-11 | 98.13383086 | 1.866169138 |
October-11 | 98.15241391 | 1.847586089 |
November-11 | 98.04114412 | 1.958855885 |
December-11 | 98.15159137 | 1.848408625 |
January-12 | 98.39503342 | 1.604966585 |
February-12 | 98.35470839 | 1.645291614 |
March-12 | 98.29967531 | 1.700324687 |
April-12 | 98.27569463 | 1.724305368 |
May-12 | 98.15686479 | 1.843135208 |
June-12 | 98.33017915 | 1.669820845 |
July-12 | 98.1302246 | 1.869775397 |
August-12 | 98.19905744 | 1.800942564 |
September-12 | 98.82537819 | 1.174621811 |
October-12 | 99.08277981 | 0.917220185 |
November-12 | 98.78583907 | 1.214160934 |
December-12 | 98.99786934 | 1.002130655 |
January-13 | 98.78506238 | 1.214937619 |
February-13 | 98.97921388 | 1.020786121 |
March-13 | 98.53172635 | 1.468273646 |
April-13 | 98.56035379 | 1.439646209 |
May-13 | 98.80080785 | 1.199192152 |
June-13 | 98.574945 | 1.425054997 |
July-13 | 98.46905231 | 1.530947691 |
August-13 | 98.76077554 | 1.239224459 |
September-13 | 98.47876221 | 1.521237794 |
October-13 | 98.48133743 | 1.518662567 |
November-13 | 98.03674255 | 1.963257446 |
December-13 | 98.01586782 | 1.984132181 |
January-14 | 98.72420692 | 1.275793075 |
February-14 | 98.96042558 | 1.039574424 |
March-14 | 98.93616393 | 1.063836069 |
April-14 | 98.80350272 | 1.196497278 |
May-14 | 98.67772293 | 1.322277074 |
June-14 | 98.58814197 | 1.411858034 |
July-14 | 98.2281573 | 1.771842699 |
August-14 | 98.2943065 | 1.7056935 |
September-14 | 98.66568744 | 1.33431256 |
October-14 | 98.94396979 | 1.056030213 |
November-14 | 99.30384091 | 0.696159092 |
December-14 | 99.31624044 | 0.683759563 |
January-15 | 99.30960389 | 0.690396109 |
February-15 | 99.11749548 | 0.882504521 |
March-15 | 99.04924891 | 0.950751085 |
April-15 | 98.93582545 | 1.064174553 |
May-15 | 98.87203977 | 1.127960227 |
June-15 | 98.76023592 | 1.239764085 |
July-15 | 98.21378339 | 1.786216606 |
August-15 | 98.66182575 | 1.338174247 |
September-15 | 98.50708291 | 1.49291709 |
October-15 | 99.06647313 | 0.933526874 |
November-15 | 99.03260801 | 0.967391988 |
December-15 | 98.97629144 | 1.02370856 |
January-16 | 99.13848759 | 0.86151241 |
February-16 | 99.0775788 | 0.922421201 |
March-16 | 99.17931652 | 0.820683477 |
April-16 | 99.07519715 | 0.924802855 |
May-16 | 99.1223342 | 0.877665795 |
June-16 | 99.07617031 | 0.92382969 |
July-16 | 98.83378725 | 1.166212745 |
August-16 | 98.66626141 | 1.333738593 |
September-16 | 98.92610231 | 1.073897691 |
October-16 | 98.95229434 | 1.047705657 |
November-16 | 98.86181551 | 1.138184485 |
December-16 | 98.9287215 | 1.071278498 |
January-17 | 98.93244473 | 1.067555269 |
February-17 | 98.74495858 | 1.25504142 |
March-17 | 98.75762873 | 1.24237127 |
April-17 | 98.68594017 | 1.314059832 |
May-17 | 98.63559342 | 1.364406585 |
June-17 | 98.6426045 | 1.357395499 |
July-17 | 98.69359056 | 1.306409438 |
August-17 | 98.6996156 | 1.3003844 |
September-17 | 98.87487911 | 1.125120886 |
October-17 | 98.90834298 | 1.091657016 |
November-17 | 98.99924455 | 1.000755453 |
December-17 | 99.13701438 | 0.862985621 |
January-18 | 98.83950957 | 1.160490429 |
February-18 | 98.93284523 | 1.067154768 |
March-18 | 98.90365044 | 1.09634956 |
April-18 | 98.88994839 | 1.110051615 |
May-18 | 98.83042258 | 1.169577422 |
June-18 | 98.85509886 | 1.144901141 |
July-18 | 98.63715133 | 1.362848667 |
August-18 | 98.76526481 | 1.23473519 |
September-18 | 98.95826437 | 1.041735635 |
October-18 | 98.92789232 | 1.07210768 |
November-18 | 98.78805126 | 1.211948736 |
December-18 | 99.05739888 | 0.942601123 |
January-19 | 98.97575293 | 1.024247067 |
February-19 | 98.95761956 | 1.042380444 |
March-19 | 98.91649811 | 1.083501889 |
April-19 | 98.83933993 | 1.160660071 |
May-19 | 98.71290053 | 1.287099465 |
June-19 | 98.86504892 | 1.134951078 |
July-19 | 98.92904507 | 1.070954931 |
August-19 | 98.77853722 | 1.221462781 |
September-19 | 99.35697169 | 0.643028308 |
October-19 | 99.48064362 | 0.519356383 |
November-19 | 99.25093951 | 0.749060493 |
December-19 | 99.36243463 | 0.637565369 |
January-20 | 99.30352667 | 0.696473326 |
February-20 | 99.82779041 | 0.17220959 |
March-20 | 99.2178639 | 0.782136104 |
April-20 | 99.25812113 | 0.741878875 |
May-20 | 99.35337605 | 0.646623945 |
June-20 | 99.50761799 | 0.492382014 |
July-20 | 99.67026013 | 0.329739874 |
August-20 | 99.49801609 | 0.501983913 |
September-20 | 99.68421841 | 0.315781592 |
October-20 | 99.66613033 | 0.333869667 |
November-20 | 99.89740182 | 0.102598182 |
December-20 | 99.81066067 | 0.18933933 |
January-21 | 99.63785354 | 0.36214646 |
February-21 | 99.89850972 | 0.101490277 |
March-21 | 99.77173651 | 0.228263488 |
April-21 | 99.69976516 | 0.300234844 |
May-21 | 99.92402713 | 0.075972869 |
June-21 | 99.92264663 | 0.077353372 |
July-21 | 99.93907623 | 0.060923765 |
August-21 | 99.93125945 | 0.068740553 |
September-21 | 99.96013159 | 0.039868415 |
October-21 | 99.94936639 | 0.050633607 |
November-21 | 99.97129142 | 0.028708582 |
December-21 | 99.94351901 | 0.056480987 |
January-22 | 99.97522916 | 0.024770839 |
February-22 | 99.99012758 | 0.00987242 |
March-22 | 100 | 0 |
April-22 | 99.99908749 | 0.000912509 |
May-22 | 99.98364782 | 0.016352177 |
June-22 | 99.99327791 | 0.006722092 |
July-22 | 100 | 0 |
August-22 | 100 | 0 |
September-22 | 99.99303896 | 0.006961044 |
October-22 | 99.98703231 | 0.012967693 |
November-22 | 99.99400634 | 0.005993661 |
December-22 | 99.99219449 | 0.007805507 |
January-23 | 99.97489994 | 0.025100055 |
February-23 | 99.99015862 | 0.009841382 |
March-23 | 99.98552582 | 0.014474177 |
April-23 | 99.99179368 | 0.008206319 |
May-23 | 99.99995713 | 4.29E-05 |
June-23 | 100 | 0 |
July-23 | 100 | 0 |
August-23 | 100 | 0 |
September-23 | 100 | 0 |
October-23 | 100 | 0 |
November-23 | 99.99980602 | 0.000193975 |
December-23 | 100 | 0 |
Note: Value Is number of automobiles divided by total automobile production. Data extend through December.
Source: Haver Analytics.
Figure 7: Evolution of trade in auto parts and motor vehicles
Trade in Vehicles vs. Parts (Left Figure)
Trade balance, billions USD
Date | Motor vehicles | Auto parts |
---|---|---|
January-10 | -1.81504 | -0.15946 |
February-10 | -1.41514 | -0.07735 |
March-10 | -2.49006 | -0.28595 |
April-10 | -2.16854 | -0.23404 |
May-10 | -1.56991 | 0.07856 |
June-10 | -1.82754 | 0.06812 |
July-10 | -2.10001 | 0.17627 |
August-10 | -1.97881 | 0.1267 |
September-10 | -2.03661 | 0.24537 |
October-10 | -1.78241 | 0.07708 |
November-10 | -2.45898 | 0.07008 |
December-10 | -2.5975 | -0.01582 |
January-11 | -2.64354 | -0.13682 |
February-11 | -2.60986 | -0.18363 |
March-11 | -2.74988 | -0.24537 |
April-11 | -2.31151 | 0.19748 |
May-11 | -2.3238 | 0.06694 |
June-11 | -2.48099 | 0.10005 |
July-11 | -2.56234 | 0.22585 |
August-11 | -2.71213 | 0.12987 |
September-11 | -3.1186 | 0.05597 |
October-11 | -3.13517 | 0.33327 |
November-11 | -3.48459 | -0.01109 |
December-11 | -3.14364 | 0.38714 |
January-12 | -2.72102 | 0.54898 |
February-12 | -4.94038 | -0.6319 |
March-12 | -3.48906 | 0.26324 |
April-12 | -3.11757 | 0.28248 |
May-12 | -3.50671 | 0.16628 |
June-12 | -3.07237 | 0.27328 |
July-12 | -2.8071 | 0.0238 |
August-12 | -3.07332 | 0.25791 |
September-12 | -2.42712 | 0.26091 |
October-12 | -1.96193 | 0.38989 |
November-12 | -2.12802 | 0.34907 |
December-12 | -1.99873 | 0.35603 |
January-13 | -2.07906 | 0.54761 |
February-13 | -2.29999 | 0.41163 |
March-13 | -2.34349 | 0.27772 |
April-13 | -2.92326 | 0.17227 |
May-13 | -2.98038 | 0.1515 |
June-13 | -3.14869 | 0.37071 |
July-13 | -3.05244 | 0.30197 |
August-13 | -3.15998 | 0.38128 |
September-13 | -3.55402 | 0.28089 |
October-13 | -3.9768 | 0.14156 |
November-13 | -3.69391 | 0.39026 |
December-13 | -3.34625 | 0.28721 |
January-14 | -4.06646 | 1.60825 |
February-14 | -4.39863 | 0.9743 |
March-14 | -3.63252 | 1.3995 |
April-14 | -4.17885 | 1.56226 |
May-14 | -4.18245 | 1.41347 |
June-14 | -4.12879 | 1.28623 |
July-14 | -4.27376 | 1.519 |
August-14 | -4.17072 | 1.33741 |
September-14 | -3.87151 | 1.32878 |
October-14 | -4.24265 | 1.43918 |
November-14 | -3.55735 | 1.61725 |
December-14 | -3.52691 | 1.41844 |
January-15 | -3.37323 | 1.65142 |
February-15 | -1.96011 | 2.69901 |
March-15 | -3.20565 | 0.77062 |
April-15 | -3.09251 | 1.59331 |
May-15 | -2.42662 | 1.62721 |
June-15 | -2.99096 | 1.51441 |
July-15 | -2.99624 | 1.52859 |
August-15 | -2.12938 | 1.73515 |
September-15 | -3.49491 | 2.00197 |
October-15 | -2.73804 | 1.73358 |
November-15 | -2.40664 | 1.33068 |
December-15 | -2.7446 | 1.37242 |
January-16 | -2.1743 | 1.75951 |
February-16 | -2.1054 | 1.72249 |
March-16 | -3.0411 | 1.26664 |
April-16 | -2.79529 | 1.33528 |
May-16 | -2.8417 | 1.48397 |
June-16 | -2.77795 | 1.2516 |
July-16 | -2.94175 | 1.38496 |
August-16 | -2.93887 | 1.56308 |
September-16 | -2.8157 | 1.27648 |
October-16 | -2.8084 | 1.05806 |
November-16 | -3.03394 | 1.28245 |
December-16 | -3.32409 | 0.77365 |
January-17 | -2.58122 | 1.69709 |
February-17 | -3.45216 | 0.65971 |
March-17 | -3.18281 | 1.19123 |
April-17 | -2.82376 | 1.55959 |
May-17 | -3.21417 | 1.7731 |
June-17 | -3.01375 | 1.64916 |
July-17 | -3.29808 | 1.64748 |
August-17 | -2.91222 | 1.45655 |
September-17 | -3.35131 | 1.21037 |
October-17 | -3.19641 | 1.56468 |
November-17 | -3.27584 | 1.62403 |
December-17 | -3.10962 | 1.65882 |
January-18 | -3.67982 | 1.18934 |
February-18 | -3.2752 | 2.70428 |
March-18 | -3.46665 | 1.1163 |
April-18 | -2.69877 | 1.44527 |
May-18 | -2.92664 | 1.34045 |
June-18 | -0.49577 | 1.74066 |
July-18 | -6.1856 | 1.43089 |
August-18 | -3.40758 | 1.62299 |
September-18 | -2.67957 | 1.66268 |
October-18 | -2.5912 | 1.7044 |
November-18 | -2.98826 | 1.92178 |
December-18 | -1.99499 | 2.2973 |
January-19 | -3.07919 | 1.8019 |
February-19 | -2.75257 | 1.48445 |
March-19 | -2.15524 | 2.08017 |
April-19 | -3.38123 | 1.65613 |
May-19 | -3.32517 | 2.07009 |
June-19 | -2.69545 | 2.05849 |
July-19 | -2.59064 | 2.24882 |
August-19 | -2.83878 | 1.41532 |
September-19 | -2.55233 | 2.34308 |
October-19 | -1.38887 | 1.93066 |
November-19 | -3.94065 | 1.38661 |
December-19 | -2.3501 | 1.87366 |
January-20 | -2.49345 | 2.99905 |
February-20 | -2.76539 | 0.30769 |
March-20 | -2.17669 | 2.42059 |
April-20 | -0.18307 | 1.74131 |
May-20 | -0.70565 | 1.34968 |
June-20 | -2.31871 | 1.07572 |
July-20 | -2.24783 | 1.2503 |
August-20 | -3.00357 | 1.97065 |
September-20 | -3.74956 | 2.44937 |
October-20 | -3.84597 | 2.25487 |
November-20 | -3.1375 | 2.99703 |
December-20 | -4.34613 | 2.7478 |
January-21 | -2.24714 | 2.1668 |
February-21 | -2.39311 | 3.7546 |
March-21 | -2.22214 | 2.61551 |
April-21 | -2.33372 | 2.8354 |
May-21 | -2.4036 | 2.66054 |
June-21 | -2.2371 | 3.05835 |
July-21 | -2.07769 | 2.67707 |
August-21 | -0.16422 | 3.26316 |
September-21 | -1.93612 | 3.27559 |
October-21 | 0.75197 | 3.67553 |
November-21 | -1.45551 | 3.40792 |
December-21 | -0.86952 | 4.47905 |
January-22 | -0.66136 | 3.57722 |
February-22 | -0.6088 | 4.40485 |
March-22 | -1.02034 | 3.65525 |
April-22 | -2.92943 | 3.39907 |
May-22 | -0.86219 | 3.97386 |
June-22 | 0.50777 | 4.36425 |
July-22 | 0.21255 | 4.92065 |
August-22 | 1.07089 | 4.49268 |
September-22 | 1.98736 | 4.16423 |
October-22 | 2.36902 | 4.40837 |
November-22 | 3.21175 | 4.26241 |
December-22 | 2.87732 | 4.2865 |
January-23 | 2.67783 | 4.90313 |
February-23 | 4.59227 | 4.96143 |
March-23 | 4.32942 | 5.81329 |
April-23 | 5.01226 | 6.00428 |
May-23 | 5.37613 | 5.41824 |
June-23 | 4.70312 | 5.05784 |
July-23 | 4.82371 | 4.80961 |
August-23 | 3.24275 | 4.96641 |
September-23 | 5.0575 | 4.876 |
October-23 | 4.67392 | 4.5691 |
November-23 | 4.76297 | 5.04455 |
December-23 | 5.4289 | 4.56122 |
Imports (Right Figure)
Jan. 2020 = 100
Date | Motor vehicles | Auto parts |
---|---|---|
January-20 | 100 | 100 |
February-20 | 99.70698958 | 98.80031199 |
March-20 | 93.97772775 | 100.1515968 |
April-20 | 50.91429128 | 108.6331506 |
May-20 | 52.95880609 | 91.17979616 |
June-20 | 104.6445403 | 124.0792603 |
July-20 | 98.15954265 | 117.4846231 |
August-20 | 118.4835679 | 117.4504405 |
September-20 | 126.9107008 | 87.00629385 |
October-20 | 135.6541889 | 139.667143 |
November-20 | 131.0694003 | 79.11749977 |
December-20 | 145.5922133 | 88.96398354 |
January-21 | 120.0154156 | 116.6666492 |
February-21 | 121.9851193 | 74.10023399 |
March-21 | 105.2792343 | 83.45966404 |
April-21 | 124.4232294 | 90.52762263 |
May-21 | 129.9495807 | 72.94383693 |
June-21 | 141.1385197 | 62.03963015 |
July-21 | 112.6836915 | 58.74231154 |
August-21 | 79.94684143 | 58.72522897 |
September-21 | 99.97997479 | 29.00209213 |
October-21 | 57.56255382 | 39.90490299 |
November-21 | 96.43860235 | 47.47050684 |
December-21 | 79.73439066 | 44.48200049 |
January-22 | 113.7646482 | 35.99999302 |
February-22 | 117.7237163 | 45.44815119 |
March-22 | 105.5684934 | 33.38386561 |
April-22 | 112.4115429 | 36.21105603 |
May-22 | 96.60475494 | 36.47191846 |
June-22 | 75.15925037 | 41.35974762 |
July-22 | 97.91022606 | 29.37115577 |
August-22 | 102.9425457 | 39.15014683 |
September-22 | 98.8637986 | 43.50314693 |
October-22 | 102.1320779 | 39.90490299 |
November-22 | 85.02119515 | 31.64699293 |
December-22 | 85.99442856 | 29.65466699 |
January-23 | 78.40271404 | 17.99999651 |
February-23 | 66.85423885 | 49.40015599 |
March-23 | 86.01885285 | 33.38386561 |
April-23 | 76.99196212 | 18.10552802 |
May-23 | 79.18700337 | 36.47191846 |
June-23 | 82.06724693 | 20.67988253 |
July-23 | 91.62959618 | 29.37115577 |
August-23 | 95.48895658 | 19.57508214 |
September-23 | 87.41059161 | 29.00209213 |
October-23 | 100.7185462 | 19.9524515 |
November-23 | 101.2704945 | 31.64699293 |
December-23 | 109.4609413 | 29.65466699 |
Note: The data extend through December.
Source: Haver Analytics.
Figure 8: Foreign direct investment in China
Billion USD
Date | Net FDI | Inward FDI | Outward FDI |
---|---|---|---|
2016:Q1 | -18.577 | 41.308 | -59.884 |
2016:Q2 | -25.972 | 37.722 | -63.694 |
2016:Q3 | -30.676 | 25.746 | -56.422 |
2016:Q4 | 33.55 | 69.974 | -36.424 |
2017:Q1 | 3.092 | 33.052 | -29.96 |
2017:Q2 | -8.302 | 21.102 | -29.404 |
2017:Q3 | 0.049 | 32.645 | -32.596 |
2017:Q4 | 32.952 | 79.284 | -46.332 |
2018:Q1 | 51.673 | 81.979 | -30.306 |
2018:Q2 | 21.431 | 61.669 | -40.238 |
2018:Q3 | -1.783 | 34.234 | -36.018 |
2018:Q4 | 21.017 | 57.482 | -36.465 |
2019:Q1 | 23.099 | 53.946 | -30.847 |
2019:Q2 | 6.727 | 42.216 | -35.49 |
2019:Q3 | -6.862 | 25.67 | -32.532 |
2019:Q4 | 27.296 | 65.338 | -38.041 |
2020:Q1 | 9.557 | 44.695 | -35.138 |
2020:Q2 | 6.101 | 47.054 | -40.953 |
2020:Q3 | 22.921 | 64.302 | -41.381 |
2020:Q4 | 60.795 | 97.045 | -36.25 |
2021:Q1 | 57.389 | 95.284 | -37.895 |
2021:Q2 | 32.083 | 78.738 | -46.655 |
2021:Q3 | 35.358 | 77.065 | -41.707 |
2021:Q4 | 40.447 | 92.988 | -52.541 |
2022:Q1 | 60.01 | 101.265 | -41.255 |
2022:Q2 | 13.321 | 38.056 | -24.735 |
2022:Q3 | -26.397 | 13.107 | -39.504 |
2022:Q4 | -16.459 | 27.738 | -44.197 |
2023:Q1 | -29.363 | 20.508 | -49.872 |
2023:Q2 | -32.201 | 6.745 | -38.946 |
2023:Q3 | -65.8 | -11.8 | -54 |
Note: The key identifies bars in order from bottom to top.
Source: State Administration of Foreign Exchange (SAFE) accessed via Haver Analytics.