August 2006

Predictive Regressions with Panel Data

Erik Hjalmarsson

Abstract:

This paper analyzes panel data inference in predictive regressions with endogenous and nearly persistent regressors. The standard fixed effects estimator is shown to suffer from a second order bias; analytical results, as well as Monte Carlo evidence, show that the bias and resulting size distortions can be severe. New estimators, based on recursive demeaning as well as direct bias correction, are proposed and methods for dealing with cross sectional dependence in the form of common factors are also developed. Overall, the results show that the econometric issues associated with predictive regressions when using time-series data to a large extent also carry over to the panel case. However, practical solutions are more readily available when using panel data. The results are illustrated with an application to predictability in international stock indices.

Full paper (screen reader version)

Keywords: Cross-sectional dependence, Panel data, Pooled regression, Predictive regression, Stock return predictability

PDF: Full Paper

Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.

Back to Top
Last Update: November 23, 2020